首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was performed to investigate the possible sources as well as seasonal and diurnal variations of indoor air pollutants in widely used four different environments (house, office, kindergarten, and primary school) in which people spend most of their time. Bioaerosol levels and species, volatile organic compound (VOC) levels, and PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) levels were determined in different parts of these environments in parallel with outdoor sampling. Air pollution samplings were carried out in each microenvironment during five subsequent days in both winter and summer in Ankara, Turkey. The results indicated that bioaerosol, VOC, and PM2.5 levels were higher in the winter than in the summer. Moreover, PM2.5 and bioaerosol levels showed remarkable daily and diurnal variations, whereas a good correlation was found between the VOC levels measured in the morning and in the afternoon. Bacteria levels were, in general, higher than fungi levels. Among the VOCs, toluene was the most predominant, whereas elevated n-hexane levels were also observed in the kindergarten and the primary school, probably due to the frequent wet cleaning during school days. According to factor analysis, several factors were found to be significantly influencing the indoor air quality (IAQ), and amongst them, VOC-based products used indoors ranked first. The overall results indicate that grab sampling in naturally ventilated places may overestimate or underestimate the IAQ due to the inhomogeneous composition of indoor air caused by irregular exchanges with the outdoor air according to the season and/or occupants' habits.

Implications Seasonal and diurnal variations of VOCs, PM2.5, bioaerosols in house, office, and schools were observed, in which PM2.5 and bioaeorosols showed marked both intra- and interday variability, but VOCs did not. VOC-containing products were the most common source of air pollutants affecting the indoor air quality. External factors affecting the indoor air quality were season and indirectly ventilation. A grab sample cannot be representative in evaluating the air quality of a naturally ventilated environment precisely.  相似文献   

2.
Abstract

It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

3.
Abstract

Ozone and several polar volatile organic compounds (VOCs) including organic acids and carbonyls (aldehydes and ketones) were measured over an approximately 24 hour period in four residences during the winter of 1993 and in nine residences during the summer of 1993. All residences were in the greater Boston, Massachusetts area. The relation of the polar VOCs to the ozone concentration was examined. Indoor carbonyl concentrations were similar between the summer and winter, with the total mean winter concentration being 31.7 ppb and the total mean summer concentration being 36.6 ppb. However, the average air exchange rate was 0.9 hr?1 during the winter and 2.6 hr?1 during the summer. Therefore, the estimated carbonyl emission rates were significantly higher during the summer. Indoor organic acid concentrations were about twice as high during the summer as during the winter. For formic acid, the indoor winter mean was 9.8 ppb, and the summer indoor mean was 17.8 ppb. For acetic acid, the indoor winter mean was 15.5 ppb, and the summer indoor mean was 28.7 ppb. The concentrations of the polar VOCs were found to be significantly correlated with one another. Also, the emission rates of the polar VOCs were found to be correlated with both the environmental variables such as temperature and relative humidity and the ozone removal rate; however, it was difficult to apportion the relative effects of the environmental variables and the ozone removal.  相似文献   

4.
Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households.As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3–4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor.The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the models. We conclude that by utilizing public databases and focused questionnaire data we can identify important predictors of indoor concentrations for multiple air pollutants in a high-risk population.  相似文献   

5.
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

Implications: Two monitoring campaigns were carried out to measure BTEX, SO2, NO2, and PM10 (particulate matter with an aerodynamic diameter <10 μm) air concentrations in the port of Naples. NO2 hourly average and PM10 daily average comply with European legislative standards. Spatial variation of pollutants long the axis corresponding to the prevailing wind direction seems to indicate a certain influence of ship emissions for SO2. For NO2 and PM10, a correlation between concentrations in the harbor and those measured by the air quality monitoring stations sited in the urban area of Naples was observed, indicating a possible contribution of the near road traffic to the air pollution in the port of Naples.  相似文献   

6.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

7.
ABSTRACT

We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (>64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM25, PM10, SO4 2-, O3, NO2, SO2, and exhaust-related VOCs.

Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM25 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2 5 sources. Evidence for this was provided by SO4 2-measurements, which can be thought of as a tracer for ambient PM25. For SO4 2-, personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments.

Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

8.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

9.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

10.
Indoor air quality (IAQ) in schools is a matter of concern because children are most vulnerable and sensitive to pollutant exposure. Conservation of energy at the expense of ventilation in heating, ventilation, and air conditioning (HVAC) systems adversely affects IAQ. Extensive use of new materials in building, fitting, and refurbishing emit various pollutants such that the indoor environment creates its own discomfort and health risks. Various schools in Kuwait were selected to assess their IAQ. Comprehensive measurements of volatile organic compounds (VOCs) consisting of 72 organic compounds consisting of aliphatic (C3–C6), aromatic (C6–C9), halogenated (C1–C7), and oxygenated (C2–C9) functional groups in indoor air were made for the first time in schools in Kuwait. The concentrations of indoor air pollutants revealed hot spots (science preparation rooms, science laboratories, arts and crafts classes/paint rooms, and woodworking shops/decoration rooms where local sources contributed to the buildup of pollutants in each school. The most abundant VOC pollutant was chlorodifluoromethane (R22; ClF2CH), which leaked from air conditioning (AC) systems due to improper operation and maintenance. The other copious VOCs were alcohols and acetone at different locations due to improper handling of the chemicals and their excessive uses as solvents. Indoor carbon dioxide (CO2) levels were measured, and these levels reflected the performance of HVAC systems; a specific rate or lack of ventilation affected the IAQ. Recommendations are proposed to mitigate the buildup of indoor air pollutants at school sites.

Implications: Indoor air quality in elementary schools has been a subject of extreme importance due to susceptibility and sensibility of children to air pollutants. The schools were selected based on their surrounding environment especially downwind direction from the highly industrialized zone in Kuwait. Extensive sampling from different sites in four schools for comprehensive VOCs and CO2 were completed for an extended period of over a year. Different hot spots were identified where leaked refrigerant and inadequate handling of laboratory solvents contributed to the high VOCs in the respective locations. CO2 levels reflected HVAC performance and poor ventilation. A list of recommendations has been proposed to eradicate these high levels of air pollution.  相似文献   


11.
The emissions of exhaust gases (NO x , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6?×?103, 374, 1.2?×?103, and 5.6?×?105 ton year?1, respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7?×?103 ton year?1) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.  相似文献   

12.
Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment.In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained unexplained.  相似文献   

13.
This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.  相似文献   

14.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   

15.
We conducted a comparative study on the indoor air quality for Japan and China to investigate aromatic volatile organic compounds (VOCs) in indoor microenvironments (living room, bedroom, and kitchen) and outdoors in summer and winter during 2006–2007. Samples were taken from Shizuoka in Japan and Hangzhou in China, which are urban cities with similar latitudes. Throughout the samplings, the indoor and outdoor concentrations of many of the targeted VOCs (benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes) in China were significantly higher than those in Japan. The indoor concentrations of VOCs in Japan were somewhat consistent with those outdoors, whereas those in China tended to be higher than those outdoors. Here, we investigated the differences in VOC concentrations between Japan and China. Compositional analysis of indoor and outdoor VOCs showed bilateral differences; the contribution of benzene in China was remarkably higher than that in Japan. Significant correlations (p < 0.05) for benzene were observed among the concentrations in indoor microenvironments and between the outdoors and living rooms or kitchens in Japan. In China, however, significant correlations were observed only between living rooms and bedrooms. These findings suggest differences in strengths of indoor VOC emissions between Japan and China. The source characterizations were also investigated using principal component analysis/absolute principal component scores. It was found that outdoor sources including vehicle emission and industrial sources, and human activity could be significant sources of indoor VOC pollution in Japan and China respectively. In addition, the lifetime cancer risks estimated from unit risks and geometric mean indoor concentrations of carcinogenic VOCs were 2.3 × 10?5 in Japan and 21 × 10?5 in China, indicating that the exposure risks in China were approximately 10 times higher than those in Japan.  相似文献   

16.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

17.
Determination of volatile organic compounds (VOCs) formed one part of the EU-EXPOLIS project in which the exposure of European urban populations to particles and gaseous pollutants was studied. The EXPOLIS study concentrated on 30 target VOCs selected on the basis of environmental and health significance and usability of the compounds as markers of pollution sources. In the project, 201 subjects in Helsinki, 50 in Athens, 50 in Basel, 50 in Milan and, 50 in Oxford and 50 in Prague were selected for the final exposure sample. The microenvironmental and personal exposure concentrations of VOCs were the lowest in Helsinki and Basel, while the highest concentrations were measured in Athens and Milan; Oxford and Prague were in between. In all cities, home indoor air was the most significant exposure agent. Workplace indoor air concentrations measured in this study were generally lower than the home indoor concentrations and home outdoor air played a minor role as an exposure agent. When estimating the measured personal exposure concentrations using the measured concentrations and time fractions spent at home indoors, at home outdoors, and at the workplace, it could be concluded that these three microenvironments do not fully explain the personal exposure. Other important sources for personal exposure must be encountered, the most important being traffic/transportation and other indoor environments not measured in this study.  相似文献   

18.
Yanbu, on the Red Sea, is an affluent Saudi Arabian industrial city of modest size. Substantial effort has been spent to balance environmental quality, especially air pollution, and industrial development. We have analyzed six years of observations of criteria pollutants O3, SO2, particles (PM2.5 and PM10) and the known ozone precursors—volatile organic compounds (VOCs) and nitrogen oxides (NOx). The results suggest frequent VOC-limited conditions in which ozone concentrations increase with decreasing NOx and with increasing VOCs when NOx is plentiful. For the remaining circumstances ozone has a complex non-linear relationship with the VOCs. The interactions between these factors at Yanbu cause measurable impacts on air pollution including the weekend effect in which ozone concentrations stay the same or even increase despite significantly lower emissions of the precursors on the weekends. Air pollution was lower during the Eids (al-Fitr and al-Adha), Ramadan and the Hajj periods. During Ramadan, there were substantial night time emissions as the cycle everyday living is almost reversed between night and day. The exceedances of air pollution standards were evaluated using criteria from the U.S. Environmental Protection Agency (EPA), World Health Organization (WHO), the Saudi Presidency of Meteorology and Environment (PME) and the Royal Commission Environmental Regulations (RCER). The latter are stricter standards set just for Yanbu and Jubail. For the fine particles (PM2.5), an analysis of the winds showed a major impact from desert dust. This effect had to be taken into account but still left many occasions when standards were exceeded. Fewer exceedances were found for SO2, and fewer still for ozone. The paper presents a comprehensive view of air quality at this isolated desert urban environment.

Implications: Frequent VOC-limited conditions are found at Yanbu in Saudi Arabia that increase ozone pollution if NOx is are reduced. In this desert environment, increased nightlife produces the highest levels of VOCs and NOx at night rather than the day. The effects increase during Ramadan. Fine particles peak twice a day—the morning peak is caused by traffic and increases with decreasing wind, potentially representing health concerns, but the larger afternoon peak is caused by the wind, and it increases with increasing wind speeds. These features suggest that exposure to pollutants must be redefined for such an environment.  相似文献   


19.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

20.
ABSTRACT

We studied the association of daily mortality with short-term variations in the ambient concentrations of major gaseous pollutants and PM in the Netherlands. The magnitude of the association in the four major urban areas was compared with that in the remainder of the country. Daily cause-specific mortality counts, air quality, temperature, relative humidity, and influenza data were obtained from 1986 to 1994. The relationship between daily mortality and air pollution was modeled using Poisson regression analysis. We adjusted for potential confounding due to long-term and seasonal trends, influenza epidemics, ambient temperature and relative humidity, day of the week, and holidays, using generalized additive models.

Influenza episodes were associated with increased mortality up to 3 weeks later. Daily mortality was significantly associated with the concentration of all air pollutants. An increase in the PM10 concentration by 100 u.g/m3 was associated with a relative risk (RR) of 1.02 for total mortality. The largest RRs were found for pneumonia deaths. Ozone had the most consistent, independent association with mortality. Particulate air pollution (e.g., PM10, black smoke [BS]) was not more consistently associated with mortality than were the gaseous pollutants SO2 and NO2. Aerosol SO4 -2, NO3 -, and BS were more consistently associated with total mortality than was PM10. The RRs for all pollutants were substantially larger in the summer months than in the winter months. The RR of total mortality for PM10 was 1.10 for the summer and 1.03 for the winter. There was no consistent difference between RRs in the four major urban areas and the more rural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号