首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural ecosystems have the potential to sequester carbon in soils by altering agricultural management practices (i.e. tillage practice, cover crops, and crop rotation) and using agricultural inputs (i.e. fertilizers and irrigation) more efficiently. Changes in agricultural practices can also cause changes in CO2 emissions associated with these practices. In order to account for changes in net CO2 emissions, and thereby estimate the overall impact of carbon sequestration initiatives on the atmospheric CO2 pool, we use a methodology for full carbon cycle analysis of agricultural ecosystems. The analysis accounts for changes in carbon sequestration and emission rates with time, and results in values representing a change in net carbon flux. Comparison among values of net carbon flux for two or more systems, using the initial system as a baseline value, results in a value for relative net carbon flux. Some results from using the full carbon cycle methodology, along with US national average values for agricultural inputs, indicate that the net carbon flux averaged over all crops following conversion from conventional tillage to no-till is -189 kg C ha(-1) year(-1) (a negative value indicates net transfer of carbon from the atmosphere). The relative net carbon flux, using conventional tillage as the baseline, is -371 kg C ha(-1) year(-1), which represents the total atmospheric CO2 reduction caused by changing tillage practices. The methodology used here illustrates the importance of (1) delineating system boundaries, (2) including CO2 emissions associated with sequestration initiatives in the accounting process, and (3) comparing the new management practices associated with sequestration initiatives with the original management practices to obtain the true impact of sequestration projects on the atmospheric CO2 pool.  相似文献   

2.
稻壳基活性炭的制备及其对亚甲基蓝吸附的研究   总被引:8,自引:3,他引:5  
以稻壳为原料,采用K2CO3活化法和H3P04活化法制备了比表面积为1312m^2/g和682m^2/g的活性炭,通过扫描电子显微镜(SEM)、X-射线衍射仪(XRD)对样品进行了表征,并将孔隙发达的活性炭样品用于对亚甲基蓝的吸附,结果表明,K2CO3活化法制备的活性炭样品具有更多的微孔结构;随着亚甲基蓝溶液初始浓度的增加、活性炭吸附时间的延长,亚甲基蓝的去除率呈现逐渐降低和逐渐增大的变化规律,当pH值为6时,活性炭对亚甲基蓝的吸附效果最佳;稻壳基活性炭对亚甲基蓝的吸附等温线符合Langmuir模型,Qm最高可达476.2mg/g;热力学参数△G^0△H^0和△S^0均为负值,表明稻壳基活性炭对亚甲基蓝的吸附是一个自发的放热反应。  相似文献   

3.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   

4.
The native carbon oxidation and PolyChloroDibenzo-p-Dioxins and PolyChloroDibenzoFurans, PCDD/F, formation were simultaneously studied at different temperatures (230-350 degrees C) and times (0-1440 min) in order to establish a direct correlation between the disappearance of the reagent and the formation of the products. The kinetic runs were conducted in an experimental set up where conditions were chosen to gain information on the role of fly ash deposits in cold zones of municipal solid waste incinerators in PCDD/F formation reaction. The carbon oxidation measured as the decrease of total organic carbon of fly ash was in agreement with the carbon evolved as sum of CO and CO(2). The carbon mass balance indicated an increase in the efficiency of carbon conversion in CO and CO(2) with temperature. The CO and CO(2) formation was the result of two parallel pseudo first order reactions thus giving significant information about the reaction mechanism. PCDD/F formation as a function of temperature showed that the maximum formation was achieved in a narrow range around 280 degrees C; the time effect at 280 degrees C was a progressive formation increase at least up to 900 min. The PCDF:PCDD molar ratio increased with temperature and time, and the most abundant homologues were HxCDD, HpCDD, OCDD for PCDD, and HxCDF, HpCDF within PCDF. These experimental results supported the hypothesis that the formation mechanism was the de novo synthesis.  相似文献   

5.
The authors used a global High Resolution Biosphere Model (HRBM), consisting of a biome model and a carbon cycle model, to estimate the changes of carbon storage in the major pools of the terrestrial biosphere from 18 000 BP to present. The climate change data to drive the biosphere for 18 000 BP were derived from an Atmospheric General Circulation Model. Using the AGCM anomalies interpolated to a 0.5 degrees grid, the HRBM data base of the present climate was recalculated for 18 000 BP. The most important processes which influenced the carbon storage include (1) climate-induced changes in biospheric processes and vegetation distribution, (2) the CO(2) fertilization effect, (3) the inundation of lowland areas resulting from the sea level rise of 100 m. Two scenarios were investigated. The first scenario, which ignored the CO(2) fertilization effect, led to total carbon losses from the terrestrial biosphere of -460 x 10(9) t. Scenario 2, which assumed that the model formulation of the CO(2) fertilization effect as used for preindustrial to present could be extrapolated to the glacial 200 microl litre(-1) (ppmv, parts per million per volume), gave a carbon fixation in the terrestrial biosphere of +213 x 10(9) t. The two scenarios were compared with CO(2) concentration data and isotopic ratios from air in ice cores. The results of Scenario 1 are not in agreement with the data. Scenario 2 gives realistic delta(13)C shifts in the atmosphere but the biospheric carbon storage at the end of the glacial period seems too large. The authors suggest that the low atmospheric CO(2) concentration may have favoured the C-4 plants in ice age vegetation types. As a consequence the influence of the low CO(2) concentration was eventually reduced and the glacial carbon storage in vegetation, litter, and soil was increased.  相似文献   

6.
全球变化背景下,城市作为主要的碳源,对其碳循环的研究成为陆地生态系统碳循环的重点内容之一。以上海市奉贤区为研究对象,基于涡度相关技术,结合定点连续观测的车流量数据,分析节假日(元旦)前后CO2浓度和碳通量的变化特征,及其与车流量的关系。结果表明,CO2浓度和通量日变化呈现明显的双峰型曲线,节假日CO2浓度(385.6mg/L)平均值低于工作日(401.1 mg/L)。在本研究时段内该系统表现为碳源,尽管在白天的某些时段是碳汇,表明城市系统碳通量受自然和人为2个因素共同作用,自然因素比如该系统中的香樟、雪松等常绿植物的光合作用,人为因素由人类活动造成。基于车流量与交通流量的线性回归分析表明,机动车量碳排放对于碳通量变化产生18%的贡献。  相似文献   

7.
Environmental Science and Pollution Research - To use microalgae for the biosequestration of carbon dioxide (CO2) emitted from the coal-fired power plants, the screening of high CO2 tolerant...  相似文献   

8.
The carbon-sequestration potential of municipal wastewater treatment   总被引:1,自引:0,他引:1  
Rosso D  Stenstrom MK 《Chemosphere》2008,70(8):1468-1475
The lack of proper wastewater treatment results in production of CO(2) and CH(4) without the opportunity for carbon sequestration and energy recovery, with deleterious effects for global warming. Without extending wastewater treatment to all urban areas worldwide, CO(2) and CH(4) emissions associated with wastewater discharges could reach the equivalent of 1.91 x 10(5) t(CO2)d(-1) in 2025, with even more dramatic impact in the short-term. The carbon sequestration benefits of wastewater treatment have enormous potential, which adds an energy conservation incentive to upgrading existing facilities to complete wastewater treatment. The potential greenhouse gases discharges which can be converted to a net equivalent CO(2) credit can be as large as 1.91 x 10(5) t(CO2)d(-1) in 2025 by 2025. Biomass sequestration and biogas conversion energy recovery are the two main strategies for carbon sequestration and emission offset, respectively. The greatest potential for improvement is outside Europe and North America, which have largely completed treatment plant construction. Europe and North America can partially offset their CO(2) emissions and receive benefits through the carbon emission trading system, as established by the Kyoto protocol, by extending existing technologies or subsidizing wastewater treatment plant construction in urban areas lacking treatment. This strategy can help mitigate global warming, in addition to providing a sustainable solution for extending the health, environmental, and humanitarian benefits of proper sanitation.  相似文献   

9.
In the present study, a series of activated carbons were prepared from agricultural waste corn cob by chemical and physical activations with potassium hydroxide (KOH)/potassium carbonate (K2CO3) and carbon dioxide (CO2). The effect of process variables such as impregnation ratio, impregnation time, activation temperature and soaking time of CO2 was studied in order to relate these preparation parameters with the physical properties of final carbon products. The resulting activated carbons were characterized by nitrogen adsorption-desorption isotherms at 77 K. The surface areas and pore volumes of carbons were estimated by the BET equation, the Langmuir equation and the t-plot method. Under the experimental conditions investigated, the main parameters in the activation of corn cob were found to be the impregnation ratio and activation temperature. The soaking time of CO2 is another important variable, which had a strong effect on the pore volume development. The BET surface area and total pore volume were as large as about 2000 m2/g and about 1.0 cm3/g, respectively. This study showed that the activation of agricultural waste corn cob with KOH/K2CO3 and CO2 was suitable for the preparation of large-surface-area activated carbons.  相似文献   

10.
In view of the present increasing trends of anthropogenic emissions of carbon dioxide (CO2) and sulphur dioxide (SO2) throughout the world, the present study was aimed at investigating the long-term influence of elevated concentrations of CO2 and SO2, singly and in combination on the physiological and biochemical characteristics of two cultivars of wheat (Triticum aestivum L. cv. Malviya 234 and HP1209). For this purpose, the plants were grown in open top chambers under field conditions and were fumigated with 600 ppm CO2, 0.06 ppm SO2 and 600 ppm CO2 + 0.06 ppm SO2 separately for 8 h daily (0800-1600 h) from germination to grain maturity. The individual treatment of SO2 advers#ely affected both the cultivars of wheat by reducing protein and starch contents. The respiration rate, total soluble sugars and total phenolics, however, increased in response to SO2. Stimulation of photosynthesis rate and reduction in stomatal conductance and transpiration rate were observed under CO2 treatment. Concentrations of total soluble sugars, starch and total phenolics increased in response to CO2 and CO2 + SO2 treatments. In combined treatment, CO2 modified the plant response to SO2 in both the cultivars. Elevated CO2 increased the photosynthesis rate under combined treatment. Higher levels of starch and soluble sugars under combined treatment provided extra carbon for SO2 detoxification. The pattern of intraspecific response of wheat to different treatments was more or less similar, but the magnitude of response differed significantly.  相似文献   

11.
Uncertainties in the role of land vegetation in the carbon cycle   总被引:6,自引:0,他引:6  
Adams JM  Piovesan G 《Chemosphere》2002,49(8):805-819
Since the late 1950s the CO2 concentration of the atmosphere has been increasing by around 0.5-3 ppm per year. Understanding of carbon sinks is vital to understanding this trend and its future behaviour. Here we examine some of the factors which may affect the proportion of anthropogenic CO2 ending up in the atmosphere in the present and in the future, and variability in the CO2 increase from one year to another. We also examine the evidence for the potential of terrestrial ecosystem carbon sinks to take up or release CO2. In some cases, a careful re-examination of the research methods used to deduce present and future feedbacks may be necessary. The most advanced technology and the most complex models do not necessarily produce reliable results. They should be carefully checked against a general background knowledge of ecological processes before their results are accepted.  相似文献   

12.
This study investigated the reforming characteristics and optimum operating condition of the high-temperature plasma torch (so called plasmatron) for hydrogen-rich gas (syngas) production. At the optimum condition, the composition of produced syngas was 45.4% hydrogen (H2), 6.9% carbon monoxide (CO), 1.5% carbon dioxide (CO2), and 1.1% acetylene (C2H2). The H2/CO ratio was 6.6, hydrogen yield was 78.8%, and the energy conversion rate was 63.6%. To obtain the optimum operating condition, parametric studies were carried out examining the effects of O2/CH4 ratio, steam/CH4 ratio, and Ni catalyst addition in reactor. When the steam/CH4 ratio was 1.23, the production of hydrogen was maximized and the methane conversion rate was 99.7%. The syngas composition was determined to be 50.4% H2, 5.7% CO, 13.8% CO2, and 1.1% C2H2. The H2/CO ratio was 9.7, hydrogen yield was 93.7%, and the energy conversion rate was 78.8%. Hydrogen production with catalyst was effective, compared with no catalyst.  相似文献   

13.
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.  相似文献   

14.
A Carbon Cycle Science Update Since IPCC AR-4   总被引:1,自引:0,他引:1  
  相似文献   

15.
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   

16.
对钙基CO2吸收剂的循环活性改善进行了研究,分析了水蒸气处理对吸收剂的最大转化率、比表面积及孔分布等微观结构变化的影响。结果表明,经水蒸气处理后,钙基CO2吸收剂的循环活性得到了改善,最大转化率比未经水蒸气处理可提高约50百分点;水蒸气处理可大大提高钙基CO2吸收剂的比表面积,并有效改善其孔径分布状态,可使其稳定保持较高的转化率;含碳能源直接制氢过程可在不需要任何添加剂或辅助手段的条件下,有效保持钙基CO2吸收剂的循环活性。  相似文献   

17.
Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners.  相似文献   

18.
Using 19 samples of fly ash collected from various MSW incineration facilities, residual carbon was characterized by gasifiable fraction at 450 degrees C (C450), and the correlations with de novo synthesis of PCDD/Fs were experimentally examined. Fly ashes were classified into three groups by the ratio of C450 to total residual carbon. By comparison of CO and CO2 generation patterns with those of reference materials, unburnt carbon of solid waste and activated carbon powder injected into flue gas were identified as a carbon source in fly ash. In the experiment of de novo synthesis of PCDD/Fs, the content of PCDD/F synthesis depended on C450 regardless of the origin of carbon. In addition, the model to predict the content of PCDD/F synthesis, DeltaPCDD/F=0.989.Cu.C450, fitted well with experimental values.  相似文献   

19.
Identifying zones of sulphide oxidation and carbonate buffering is important in the development of a management plan for mine waste-rock piles. In this study, we used a kinetic cell technique to measure rates of O2 consumption and CO2 production in low sulphide (<0.12 wt.% S), low inorganic carbon (<0.20 wt.% C(inorganic)), gneissic waste rock and associated organic-rich lake sediment (0.7 wt.% C(organic)), and forest soil (1.4 wt.% C(organic)) collected from the Key Lake uranium mine in Saskatchewan, Canada. Solid chemistry, stable carbon isotope, pore water sulphate concentration data, and stoichiometric considerations indicated that O2 consumption and CO2 production were constrained by microbial respiration in the lake sediment and forest soil and by pyrite oxidation-carbonate buffering in the gneissic waste rock. Mean ratios of molar CO2 production to O2 consumption rates were 0.5 for lake sediment, 0.7 for forest soil, and 0.2 for gneissic waste rock. The different O2/CO2 ratios suggested that O2-CO2 monitoring may provide a practical tool for identifying the zones of microbial respiration and pyrite oxidation-carbonate buffering in mine waste-rock piles. Rates of O2 consumption and CO2 production were about one order of magnitude greater in lake sediment than in gneissic waste rock, indicating that microbial respiration would exert a control on the distribution of O2 and CO2 gas in waste-rock piles constructed upon the dewatered lake sediments.  相似文献   

20.
Environmental Science and Pollution Research - In this study, activated carbon and piperazine-modified activated carbon adsorbents were prepared and used for CO2 adsorption. The effect of various...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号