首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Development policy increasingly focuses on building capacities to respond to change (adaptation), and to drive change (innovation). Few studies, however, focus specifically on the social and gender differentiation of capacities to adapt and innovate. We address this gap using a qualitative study in three communities in Solomon Islands; a developing country, where rural livelihoods and well-being are tightly tied to agriculture and fisheries. We find the five dimensions of capacity to adapt and to innovate (i.e. assets, flexibility, learning, social organisation, agency) to be mutually dependant. For example, limits to education, physical mobility and agency meant that women and youth, particularly, felt it was difficult to establish relations with external agencies to access technical support or new information important for innovating or adapting. Willingness to bear risk and to challenge social norms hindered both women’s and men’s capacity to innovate, albeit to differing degrees. Our findings are of value to those aspiring for equitable improvements to well-being within dynamic and diverse social–ecological systems.  相似文献   

2.
Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin.  相似文献   

3.
Simulating the temporal changes of OCP pollution in Hangzhou, China   总被引:4,自引:0,他引:4  
Cao HY  Liang T  Tao S  Zhang CS 《Chemosphere》2007,67(7):1335-1345
A dynamic fugacity model was applied to simulate the changes of contents and transfer fluxes of hexachlorocyclohexane (HCHs) and dichloro-diphenyl-trichloroethane (DDTs) from 1950s in the environment of Hangzhou, China. The receptors are composed of air, surface water, soils, sediment and biota compartments. The model provides a method to combine loadings of HCHs and DDTs from various sources with a series of physical-chemical processes to estimate concentrations and transport fluxes of HCHs and DDTs. Model results suggested that the calculated concentrations were in line with the observed ones. The highest contents of HCH and DDT in the environment of study area were 523 t and 471 t before 1983, among which about 80.7% HCHs and 93.2% DDTs remained in the soil compartment. From 1984 to now, contents of HCHs and DDTs had decreased to about 0.07% and 0.40% of their highest amount (before 1983), and only about 0.001% and 0.014% will expect to be left in 2020 in the study area according to the model prediction. Before 1983, the main transfer fluxes of HCHs were deposition from air to soil, runoff from soil to water and diffusion from soil to air, but for DDTs the main transfer fluxes were deposition from air to soil and water, and transfer from water to sediment. From 1984 to now, runoff from soil to water and transfer from water to sediment became the dominant processes. Although a large amount of HCHs and DDTs had been applied to the study area, their residue levels in the soils were much lower than those in North China (had lesser HCHs and DDTs application than in South China) at present time, and close to other locations of South China (had similar HCHs and DDTs application level). It can be attributed to the high precipitation and temperature that enhances the processes of wet deposition, evaporation and degradation of OCPs. Sensitivities of the input parameters to the calculated concentrations were evaluated using coefficient-of-variation normalized sensitivity coefficients. The model was also subjected to uncertainty analyses using a Monte Carlo simulation.  相似文献   

4.
Yan ND  Leung B  Keller W  Arnott SE  Gunn JM  Raddum GG 《Ambio》2003,32(3):165-169
Surface water acidity is decreasing in large areas of Europe and North America in response to reductions in atmospheric S deposition, but the ecological responses to these water-quality improvements are uncertain. Biota are recovering in some lakes and rivers, as water quality improves, but they are not yet recovering in others. To make sense of these different responses, and to foster effective management of the acid rain problem, we need to understand 2 things: i) the sequence of ecological steps needed for biotic communities to recover; and ii) where and how to intervene in this process should recovery stall. Here our purpose is to develop conceptual frameworks to serve these 2 needs. In the first framework, the primarily ecological one, a decision tree highlights the sequence of processes necessary for ecological recovery, linking them with management tools and responses to bottlenecks in the process. These bottlenecks are inadequate water quality, an inadequate supply of colonists to permit establishment, and community-level impediments to recovery dynamics. A second, more management-oriented framework identifies where we can intervene to overcome these bottlenecks, and what research is needed to build the models to operationalize the framework. Our ability to assess the benefits of S emission reduction would be simplified if we had models to predict the rate and extent of ecological recovery from acidification. To build such models we must identify the ecological steps in the recovery process. The frameworks we present will advance us towards this goal.  相似文献   

5.
This study was conducted to evaluate the effect of hairy vetch cover crop residue on runoff losses of atrazine and metolachlor under both no-till corn field plots and from a laboratory runoff system. A 2-year field study was conducted in which losses of atrazine and metolachlor from vetch and non-vetch field plots were determined from the first runoff event after application (5 and 25 days after application in 1997 and 1998, respectively). A laboratory study was conducted using soil chambers, designed to simulate field soil, water, vegetation, and herbicide treatment conditions, subjected to simulated rain events of 5, 6, 20 and 21 days after application, similar to the rainfall pattern observed in the field study. Atrazine losses ranged from 1.2 to 7.2% and 0.01 to 0.08% and metolachlor losses ranged from 0.7 to 3.1% and 0.01 to 0.1% of the amount applied for the 1997 and 1998 runoff events, respectively. In the laboratory study, atrazine runoff losses ranged from 6.7 to 22.7% and 4.2 to 8.5% and metolachlor losses ranged from 3.6 to 9.8% and 1.1 to 4.7% of the amount applied for the 5-6 and 20-21 day events, respectively. The lower losses from the field study were due to smaller rainfall amounts and a series of small rains prior to the runoff event that likely washed herbicides off crop residue and into soil where adsorption could occur. Runoff losses of both herbicides were slightly higher from non-vetch than vetch field plots. Losses from the laboratory study were related to runoff volume rather than vegetation type.  相似文献   

6.
Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.  相似文献   

7.
This perspective paper argues for an urgent need to monitor a set of 12 concrete, measurable indicators of food and water security in the Arctic over time. Such a quantitative indicator approach may be viewed as representing a reductionist rather than a holistic perspective, but is nevertheless necessary for actually knowing what reality aspects to monitor in order to accurately understand, quantify, and be able to project critical changes to food and water security of both indigenous and non-indigenous people in the Arctic. More relevant indicators may be developed in the future, taking us further toward reconciliation between reductionist and holistic approaches to change assessment and understanding. However, the potential of such further development to improved holistic change assessment is not an argument not to urgently start to monitor and quantify the changes in food and water security indicators that are immediately available and adequate for the Arctic context.  相似文献   

8.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   

9.
The wild tomato species Lycopersicon pimpinellifolium (currant tomato) was exposed to different O3 concentration, both in controlled environment fumigation facilities and in open-top chambers, to assess its sensitivity and to verify its potential as a bioindicator plant. Plants appeared particularly sensitive to O3 at an early stage of growth, responding with typical chlorotic spots within 24 h after exposure to a single pulse of 50 ppb for 3 h, and differentiating peculiar symptoms, such as reddish necrotic stipples, bronzing and extensive necrosis, depending on O3 concentration. Histo-cytochemical investigations with 3,3'-diaminobenzidine, to localize H2O2, and Evans blue, to detect dead cells, suggested that currant tomato sensitivity to O3 could be due to a deficiency in the anti-oxidant pools. The combination of these stainings proved to be useful, either to predict visible symptoms, early before their appearance, and to validate leaf ozone injury.  相似文献   

10.
While more developed countries have a well-established systems to develop water quality criteria (WQC), little research has been done on the adequacy of the current WQC to protect endemic species of China. In order to maintain the health of aquatic ecosystems in China, a series of projects to establish national WQC based on regional characteristics has recently been initiated. However, the establishment of a completely novel methodology would be costly and time consuming. Also, due to the similarities in physiologies and natural histories of classes of aquatic organisms, there is no reason to believe that WQC would not be sufficient to protect unique species in China. This review was undertaken to identify key outstanding issues regarding establishment of aquatic life criteria (ALC) to be applied in China, including prioritization of chemicals, test species, mode of action, field/semi-field data, and methods of aggregating the information and calculating the ALC. This was used to identify the principle issues that need to be addressed in order to better understand the methods for development of criteria for the protection of aquatic life and provide a reference to China and other developing countries committed to the establishment of their own WQC system.  相似文献   

11.
Response types in Collembola towards copper in the microenvironment   总被引:7,自引:0,他引:7  
Laboratory studies were carried out to cast light on differences in density responses among collembolan species to copper (Cu)-polluted environments. In a recolonisation experiment, mesofauna originating from a copper (Cupolluted arable field were allowed to colonise defaunated Cu-contaminated and uncontaminated soil cores for 3 months. The abundances of Pseudosinella alba and gamasid mites were higher in the uncontaminated soil, whereas the majority of other collembolans tended to be more abundant in the Cu-enriched soil. Behavioural experiments were conducted to test the ability of single Collembola species to distinguish between filter paper and food soaked in water, Cu, and calcium (Ca) solutions. Onychiurus armatus avoided both Cu and Ca, whereas Folsomia quadrioculata and Folsomia manolachei showed a significant preference for Cu. Isotomurus palustris was not able to distinguish between Cu and water. The results are compared and discussed with regard to other studies on the occurrence and behaviour of Collembola in Cu-contaminated environments. We suggest that microsite selection according to preference or avoidance of high salinity of pore water may partly explain the community structure of Collembola in Cu-polluted soils which are characterised by an increase of euedaphic species. More studies have to be carried out to generalise this concept and to explore to what extent reduced predation by gamasid mites contribute to the success of certain Collembola in Cu-contaminated sites.  相似文献   

12.
The advent of stringent regulation of the storage of liquids in underground containers presents a new dimension to an operating practice long taken for granted. Previously, tanks went underground to provide a safe and convenient method for handling.liquids. Unfortunately, the environmental impact of leakage from those containers was not anticipated, nor were tank designs properly configured to minimize the threat. As local officials became alert to the potential for damage, public pressure forced tank owners to rethink this casual practice. Manufacturers and suppliers of tanks and associated hardware have moved rapidly to the new state of the art called for to meet the new standards for storage techniques, and to provide effective leak prevention and detection. This paper presents a chronology of the progress made to date in storage equipment and operating practices to provide the environmental protection demanded of underground tank owners and operators. Tank design, secondary containment, monitoring, spill and overfill protection, tank testing methods, and installation and closure procedures—as related to leak prevention—are presented  相似文献   

13.
Air quality models rely upon simplified photochemical mechanisms to efficiently represent the thousands of chemical species that interact to form air pollution. Uncertainties in the chemical reaction rate constants and photolysis frequencies that comprise those mechanisms can generate uncertainty in the estimation of pollutant concentrations and their responsiveness to emission controls. A high-order sensitivity analysis technique is applied to quantify the extent to which reaction rate uncertainties influence estimates of ozone concentrations and their sensitivities to precursor emissions during an air pollution episode in Houston, Texas. Several reactions were found to have much larger proportional effects on ozone’s sensitivities to emissions than on its concentrations. In particular, uncertainties in photolysis frequencies and in the rate of reaction between NO2 and OH to form nitric acid can significantly influence the magnitude and sign of peak ozone sensitivity to nitrogen oxide (NOx) emissions. Ozone sensitivity to VOCs exhibits a much more muted response to uncertainties in the reaction rate constants and photolysis frequencies considered here. The results indicate the importance of accurate reaction rate constants to predicting the ozone impacts resulting from NOx emission controls.  相似文献   

14.
Within the framework of research concerning the application of techniques alternative to chemical pesticides for control of parasites, the C.R.A. Experimental Institute for Olive Growing for many years has been performing a large investigation in order to detect sources of genetic resistance in olive germplasm. In the present study we observed the behavior related to the olive fly (Bactrocera oleae) infestation and Camarosporium dalmaticum infection of ten olive cultivars farmed under the same agronomic and climatic conditions in Calabria, Southern Italy. The sampling and the data collecting were carried out in three different ripening times.The drupe amount of oleuropein and cyanidine was detected by laboratory analyses in order to verify a possible correlation between these molecules and the level of infestation/infection of the above-mentioned parasites. The obtained data were submitted to analysis of variance. In relation to the fungal infection the results displayed that cvs Tonda nera dolce showed the lowest susceptibility, while the cv Giarraffa turned out to be the most susceptible. The less susceptible cultivars to the phytophagous were Tonda nera dolce and Bhardi Tirana. Since the less susceptible cultivar to olive fly attacks are the same observed in relation to the susceptibility to olive fruit rot, it is suggested a relation between the olive fly infestation and the fungal infection. It suggests the utility to achieve these results both to transfer directly to the farmers' world and to emphasize ecosystem health and biodiversity conservation.  相似文献   

15.
Monitoring and laboratory data play integral roles alongside fate and exposure models in comprehensive risk assessments. The principle in the European Union Technical Guidance Documents for risk assessment is that measured data may take precedence over model results but only after they are judged to be of adequate reliability and to be representative of the particular environmental compartments to which they are applied. In practice, laboratory and field data are used to provide parameters for the models, while monitoring data are used to validate the models' predictions. Thus, comprehensive risk assessments require the integration of laboratory and monitoring data with the model predictions. However, this interplay is often overlooked. Discrepancies between the results of models and monitoring should be investigated in terms of the representativeness of both. Certainly, in the context of the EU risk assessment of existing chemicals, the specific requirements for monitoring data have not been adequately addressed. The resources required for environmental monitoring, both in terms of manpower and equipment, can be very significant. The design of monitoring programmes to optimise the use of resources and the use of models as a cost-effective alternative are increasing in importance. Generic considerations and criteria for the design of new monitoring programmes to generate representative quality data for the aquatic compartment are outlined and the criteria for the use of existing data are discussed. In particular, there is a need to improve the accessibility to data sets, to standardise the data sets, to promote communication and harmonisation of programmes and to incorporate the flexibility to change monitoring protocols to amend the chemicals under investigation in line with changing needs and priorities.  相似文献   

16.
Soil vapor extraction (SVE) is typically effective for removal of volatile contaminants from higher-permeability portions of the vadose zone. However, contamination in lower-permeability zones can persist due to mass transfer processes that limit the removal effectiveness. After SVE has been operated for a period of time and the remaining contamination is primarily located in lower-permeability zones, the remedy performance needs to be evaluated to determine whether the SVE system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. Numerical modeling of vapor-phase contaminant transport was used to investigate the correlation between measured vapor-phase mass discharge, MF(r), from a persistent, vadose-zone contaminant source and the resulting groundwater contaminant concentrations. This relationship was shown to be linear, and was used to directly assess SVE remediation progress over time and to determine the level of remediation in the vadose zone necessary to protect groundwater. Although site properties and source characteristics must be specified to establish a unique relation between MF(r) and the groundwater contaminant concentration, this correlation provides insight into SVE performance and support for decisions to optimize or terminate the SVE operation or to transition to another type of treatment.  相似文献   

17.
Initial failure to site a small hazardous waste transfer station focussed attention on the need for a siting approach to overcome community resistance to negotiating siting agreements. A community study program was structured utilizing key principles of community decision making to justify need, to allow for community value judgments of gains, losses and fairness, and to encourage community adaptation to change by providing community control and choice. By translating these principles into specific actions, community awareness and responsibility were fostered and resulted in a consensus to negotiate with transfer station proponents in over 70 percent of the fourteen participating communities. The successful communities represented the entire range of size, income, education levels, type and ownership of homes. Participants stated that the key factors that contributed to their success in reaching consensus were the recognition of need, choice of options and of management measures to minimize impacts, economic cost reduction, and the growth of community pride as a result of taking part in the decision process. These factors reflect the positive effect and the significance of applying the derived decision-making principles.  相似文献   

18.
ESF Workshop     
Dioxin and PCB monitoring programs for food and feeding stuff in most countries of the world, including many European Countries are currently inadequate. Better control of food production lines and food processing procedures is needed to minimize entry of dioxin to the food chain and will help to avoid dioxin contamination accidents. This would also improve the ability to trace back a possible contamination to its source. European guidelines for monitoring programs should be established to ensure comparable and meaningful results. These guidelines should define the minimum requirements for the design of monitoring programs, analytical methods, and quality assurance. Though data from Northern Europe shows that the general population exposure to dioxin and PCB has decreased during the last ten years these compounds continue to be a risk of accidental contamination of the food chain. The most prominent recent example is the Belgian dioxin contamination of feeding stuff in 1999. The Belgian dioxin contamination was not detected due to dioxin monitoring programs but by their direct biological effects seen in animals. Four other cases of dioxin contamination have been detected in Europe since 1997 due to local monitoring programs. One of them (citrus pulp pellets 1998) was in a much larger scale than the Belgian dioxin contamination. The general population's exposure to dioxins and PCBs is still in the same range (1-4 pg WHO-TEQ/kg body weight and day) as the recently revised WHO tolerable daily intake (TDI). There is concern that short-term high level exposure to dioxins, furans, and PCB may cause biological effects on the human fetal development and further research is required. Further actions to control sources building on considerable advances already made in many countries may need to be supplemented by measures to prevent direct contamination of feeding stuff or food to reduce general population exposure further.  相似文献   

19.
Planarian neoblasts are somatic stem cells that have the potential to be used in genotoxicity assays due to their proliferative nature, sensitivity to genotoxic agents, and experimental accessibility. Two freshwater planarian species, Girardia tigrina and Girardia schubarti, were used to develop a neoblast-based micronucleus (MN) assay to assess genotoxicity. Intact or regenerating planarians were exposed to gamma-rays, methyl methanesulphonate (MMS), or cyclophosphamide (CP), and neoblast MN frequency was measured. Exposure to the clastogens had no detectable effect on the MN frequency of intact planarian neoblasts. However, for regenerating individuals, active neoblast proliferation was induced by decapitation, and gamma-ray doses as low as 0.5 Gy, and MMS and CP concentrations as low as 0.8 microM and 100 mM, respectively, induced a significant increase in MN frequency. Exposure to higher doses of gamma-rays consistently resulted in detectable increases in MN frequency. For MMS and CP, concentrations of up to 1.6 microM and 200 mM, respectively, resulted in significant increases in MN frequency, but exposures to higher concentrations led to a decrease to non-significant levels, possibly due to cytotoxic effects of MMS and CP. After completion of regeneration, the MN frequencies returned to those of non-exposed controls, indicating that the neoblast MN assay for regenerating G. tigrina or G. schubarti reflects chromosomal damage caused by acute exposure to clastogenic agents. Upon standardization, this assay may represent an interesting alternative that allows damage caused to freshwater organisms by potentially genotoxic environmental pollutants to be monitored.  相似文献   

20.
The COVID-19 pandemic has brought profound social, political, economic, and environmental challenges to the world. The virus may have emerged from wildlife reservoirs linked to environmental disruption, was transmitted to humans via the wildlife trade, and its spread was facilitated by economic globalization. The pandemic arrived at a time when wildfires, high temperatures, floods, and storms amplified human suffering. These challenges call for a powerful response to COVID-19 that addresses social and economic development, climate change, and biodiversity together, offering an opportunity to bring transformational change to the structure and functioning of the global economy. This biodefense can include a “One Health” approach in all relevant sectors; a greener approach to agriculture that minimizes greenhouse gas emissions and leads to healthier diets; sustainable forms of energy; more effective international environmental agreements; post-COVID development that is equitable and sustainable; and nature-compatible international trade. Restoring and enhancing protected areas as part of devoting 50% of the planet’s land to environmentally sound management that conserves biodiversity would also support adaptation to climate change and limit human contact with zoonotic pathogens. The essential links between human health and well-being, biodiversity, and climate change could inspire a new generation of innovators to provide green solutions to enable humans to live in a healthy balance with nature leading to a long-term resilient future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号