首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Photooxidation of arsenite by natural goethite in suspended solution   总被引:1,自引:0,他引:1  
Iron and arsenic have been found to coexist in a water environment and the fate of arsenite in the aquatic system is influenced by iron. Goethite is a form of iron hydroxide, which is commonly found in sediments. In previous studies, we have used iron complexes to degrade organic pollutants. Results have shown that some organic pollutants could be totally degraded by iron complexes and our work indicated that iron might cause conversion of arsenic when irradiated. This work attempts to investigate the conversion of arsenite [As(III)] using natural goethite, as the iron source, to quantify the effect of various factors on photooxidation. We also consider the possible mechanism for photooxidation of As(III) using a suspension of natural goethite. The As(III) concentration variation under illumination was compared with the one in the dark to quantify the contribution of light to As(III) oxidation to As(V) in goethite suspended solution. The experiments under N2 and air atmosphere confirmed the participation of dissolved oxygen. The photooxidation efficiency of As(III) under different conditions was compared to determine the effect of different environmental factors such as pH value, goethite concentration, and humic acid concentration on the photooxidation reaction. In the solution containing 100 μg L?1 arsenite and 0.1 g?L?1 suspended goethite at pH 3.0, nearly 80 % of As(III) was photooxidized after irradiation by a 250-W metal halogen lamp (λ?≥?313 nm) after 6 h. The effects of initial pH and goethite concentration and humic acid concentration were all examined. The results show that the greatest efficiency of photooxidation of As(III) was at pH 3.0. The extent of photooxidation decreased with increasing goethite concentration and fell sharply in the presence of humic acid under the conditions in this work. Although about 80 % of As(III) was photooxidized after irradiation by a 250-W halogen lamp at pH 3.0 in the presence of goethite suspension, photooxidation was also affected by factors such as pH, concentration of goethite, and presence of humic acid. The scavenger experiments showed that the HO? radical and photogenerated hole are the predominant oxidants in this system responsible for 87.1 % oxidation of As(III), while HO 2 ? /O 2 ?? is responsible for 12.9 % oxidation of As(III).  相似文献   

2.
Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity 234U/238U activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in 234U/238U activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.  相似文献   

3.
Fu H  Quan X 《Chemosphere》2006,63(3):403-410
The present work extended our knowledge on the binding and complexation of a fulvic acid (FA) derived from leonardite and the iron oxides (hematite, goethite and akaganeite) by Fourier transform infrared spectroscopy (FTIR). As a prerequisite, the iron oxides were firstly prepared and characterized by transmission electron micrograph (TEM). All iron phases were single and well-described crystalloid. The FTIR data obtained by two different sampling preparation methods gave the consisting evidences that under our experimental conditions the interaction mechanism was to the ligand-exchange involving carboxylic functional groups of the FA and the surfaces sites of both hematite and goethite, while no complexation can be evidenced in the case of akaganeite, only surface adsorption. In general, the binding affinities of the iron oxides with the FA was in the order of hematite>goethite>akaganeite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in the field of the humic chemistry.  相似文献   

4.
Hanoch RJ  Shao H  Butler EC 《Chemosphere》2006,63(2):323-334
This study investigated the transformation of carbon tetrachloride (CT) by goethite, hematite, magnetite, and kaolinite treated with bisulfide to form coatings of iron monosulfide (FeS) and other Fe(II) species. These coatings contribute to abiotic natural attenuation in anaerobic environments. Batch kinetic experiments were performed under anoxic conditions at pH 8.0. Surface-area-normalized pseudo-first-order rate constants for CT transformation did not differ significantly for the three HS- treated iron oxides, but the rate of CT transformation by bisulfide-treated kaolinite was significantly lower, most likely due to kaolinite's lower iron content. The yield of chloroform (CF) from CT transformation was typically approximately 1%. There was negligible or only slight adsorption of several natural organic matter (NOM) model compounds to the surface of HS- treated goethite, and these compounds had no influence on CT transformation rate constants or CF yields. Juglone, on the other hand, adsorbed to a greater extent, and also significantly influenced the CF yield, increasing it by a factor of approximately 20 for HS- treated hematite. We speculate that juglone or its HS- addition product adsorbed to the mineral surface and acted as a hydrogen atom donor that reacted with the trichloromethyl radical intermediate, increasing the CF yield.  相似文献   

5.
To determine the nature of aerosol particles in a rural area of the eastern United States, aerosol samples were collected at Deep Creek Lake, Maryland, on various substrates and analyzed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). SEM analysis of particles larger than 2.5 μm collected on Nuclepore filters revealed the following: clay minerals, quartz, gypsum, and calcite comprised 50 percent of the particles analyzed; spores, pollen, and plant debris comprised 25 percent; 9 percent were fly ash; 11 percent were sulfates; 5 percent were unidentified. Particles ranging from 0.3 to 2 μm were collected in a cascade impactor on grid-supported carbon films and analyzed by TEM for decomposition rate as well as for reaction with the barium chloride and nitron (C20H16N4) films that were applied after sampling. The TEM analyses indicated that as much as 95 percent of the particles in the 0.3- to 2-μm diameter range were pure ammonium sulfate or acidic ammonium sulfate; they contained essentially no insoluble or nonvolatile matter. About 5 percent of the particles were fly ash spheres. When replicas of particles collected on Nucleopore filters were analyzed by TEM, we observed agglomerates of particles smaller than 0.1 μm.  相似文献   

6.
Aerosol particles were collected in the situation of the widespread dust suspension on 21 February 1991 at Qira in the southern edge of the Taklamakan Desert, western China. The collected particles were examined by a transmission electron microscope equipped with an energy-dispersive X-ray (EDX) analyzer in order to obtain the size and elemental composition of individual mineral particles.On the basis of EDX analyses for 386 particles, mineral particles were present in high number fractions (>99%) of particles in the radius range of 0.1–4 μm. Particles mainly composed of silicates comprised 76% of mineral particles. “Ca-rich” particles were detected in 7% of all the particles. Ca in the particles would be present not only as CaCO3 but also as an internal mixture of CaCO3 and CaSO4. Particles containing halite (NaCl) were detected in number proportions of about 10% and were mainly present in the radius range of 0.5 μm. Some halite particles would be modified by chemical reactions with sulfuric acid.  相似文献   

7.
Antimony sorption at gibbsite-water interface   总被引:3,自引:0,他引:3  
Antimony (Sb) is extensively used in flame retardants, lead-acid batteries, solder, cable coverings, ammunition, fireworks, ceramic and porcelain glazes and semiconductors. However, the geochemical fate of antimony (Sb) remained largely unexplored. Among the different Sb species, Sb (V) is the dominant form in the soil environment in a very wide redox range. Although earlier studies have examined the fate of Sb in the presence of iron oxides such as goethite and hematite, few studies till date reported the interaction of Sb (V) with gibbsite, a common soil Al-oxide mineral. The objective of this study was to understand the sorption behavior of Sb (V) on gibbsite as a function of various solution properties such as pH, ionic strength (I), and initial Sb concentrations, and to interpret the sorption-edge data using a surface complexation model. A batch sorption study with 20 g L−1 gibbsite was conducted using initial Sb concentrations range of 2.03-16.43 μM, pH values between 2 and 10, and ionic strengths (I) between 0.001 and 0.1 M. The results suggest that Sb (V) sorbs strongly to the gibbsite surface, possibly via inner-sphere type mechanism with the formation of a binuclear monodentate surface complex. Weak I effect was noticed in sorption-edge data or in the isotherm data at a low surface coverage. Sorption of Sb (V) on gibbsite was highest in the pH range of 2-4, and negligible at pH 10. Our results suggest that gibbsite will likely play an important role in immobilizing Sb (V) in the soil environment.  相似文献   

8.
Environmental Science and Pollution Research - Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12&nbsp;years of aging using aberration-corrected...  相似文献   

9.
Han SK  Hwang TM  Yoon Y  Kang JW 《Chemosphere》2011,84(8):1095-1101
The generation of reactive species in an aqueous goethite suspension, under room light and aeration conditions, was investigated using the electron paramagnetic resonance (EPR) technique employing spin trap agents. The trap reagents, including 5,5-dimethylpyrroline N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP), were used for the detection of OH radicals (OH) and singlet oxygen (1O2), respectively. On the addition of DMPO to the goethite suspended solution, a DMPO-OH adduct was formed, which was not decreased, even in the presence of the OH scavenger, mannitol. This result implied a false positive interpretation from the DMPO-OH EPR signal. In the presence of TEMP reagent, a TEMP-O signal was detected, which was completely inhibited in the presence of the singlet oxygen scavenger, sodium azide. With both DMPO-OH and TEMP-O radicals in the presence and absence of radical scavengers, singlet oxygen was observed to be the key species formed in the room-light sensitized goethite suspension. In the goethite/H2O2 system; however, both OH and singlet oxygen were generated, with significant portions of DMPO-OH resulting from both OH and singlet oxygen. In fact, the DMPO-OH resulting from OH should be carefully calculated by correcting for the amount of DMPO-OH due to singlet oxygen. This study reports, for the first time, that the goethite suspensions may also act as a natural sensitizer, such as fulvic acids, to form singlet oxygen.  相似文献   

10.
Samples from two strong homogeneous dust plumes from the Saharan desert reaching Izaña (Tenerife, Spain) in July and August 2005 were taken with a miniature impactor system and filter samplers. Size, aspect ratio and chemical composition of more than 22,000 individual particles were studied by scanning electron microscopy. The mineralogical phase composition of about 200 particles was investigated by transmission electron microscopy. In addition, the aerosol size distribution was measured with an optical particle spectrometer. In all samples, the aerosol was dominated by mineral dust with an average composition (by volume) of 64% silicates, 6% quartz, 5% calcium-rich particles, 14% sulfates, 1% hematite, 1% soot and 9% other carbonaceous material. Sulfate was found predominantly as coating on other particles with an average thickness of approximately 60 nm. The aerosol calcium content is correlated with the calcite concentrations of soils in the source region, highest values were observed for northern and central Algeria and Morocco. The average aspect ratio of the particles was 1.64. The distributions of the aspect ratios are parameterized by log-normal functions for modeling purpose. Single-scattering albedo (0.95) and asymmetry factor (0.74–0.81) was measured by polar aerosol photometry on filter samples using a light source resembling the solar spectrum. The apparent soot content of the sample (1 vol%) was determined by the same technique. From the mineralogical data, an average complex refractive index of 1.59–9×10−3i for visible light was derived. The imaginary part of the complex refractive index decreases with increasing particle size from −2.5×10−2i to <−10−3i, reflecting the decreasing hematite and soot contents. The imaginary part derived from optical measurements was −7×10−3i.  相似文献   

11.
Electrochemical peroxidation (ECP), an emerging remediation technology, with direct electric current applied to steel electrode and small addition of H2O2, was used to remove As(III) from contaminated aqueous solutions. Bench scale experiments were conducted to evaluate the sorption and distribution of arsenic between the soluble and solid state hydrous ferric oxides (HFO) formed as part of the ECP process. ECP was effective in removing arsenic from the aqueous solution, with >98% of the applied As(III) adsorbed on HFO. Removal was complete within 3 min of ECP treatment and apparently independent of the initial pH of the water (3.5-9.5). In the absence of H2O2 more As(III) was adsorbed by solid state iron at pH 9.5 than at 3.5 (2600 vs. 1750 microg l(-1)). Thus H2O2 was crucial to oxidize As(III) to As(V) which is more strongly retained by HFO. Removal of As was not significantly affected by the concentration of H2O2 or by current processing time. The optimal operating conditions were pH < 6.5, H2O2 concentration of 10 mg l(-1) and current process time not exceeding 3 min. X-ray diffraction (XRD), diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy and transmission electron microscopy (TEM) were applied to study the HFO deposits. The XRD data indicated the prevalence of poorly ordered Fe minerals in the suspended ECP solids with a dominance of 5 line ferrihydrite in the absence of H2O2. At pH 3.5 and with 100 mg H2O2 l(-1), akaganeite was formed, whereas an incipient hematitic phase, reflection at 0.39 nm, occurred at pH 6.5. DRIFT data indicate that both As(III) and As(V) were specifically adsorbed onto HFO at acid and neutral pH. TEM observations indicated the presence of spherical shape ferrihydrite and provided evidence for possible formation of subrounded hematite and acicular shape goethite.  相似文献   

12.
The lack of water is the most serious threat to humanity that leads to more efficient water and sewage treatment. Currently, many scientists are looking for new coagulants, flocculants and physicochemical methods allowing for sufficient removal of pollutants from water. The presence of various types of pigments, including chromium (III) oxide, poses the major problem. Even small amounts of these substances inhibit life processes in water. In this paper, the stability of Cr2O3 suspension in the absence and the presence of polyacrylic acid (PAA) was determined. To explain the changes in the system stability, the adsorption and electrokinetic measurements were performed. The chromium (III) oxide suspension not containing PAA is the most stable at pH?=?3. Under these conditions, each positively charged solid particle is surrounded by a negatively charged diffusion layer which protects from particle collision and aggregates formation (electrostatic stabilization). In turn, the Cr2O3 suspension containing the PAA is most unstable also at pH?=?3. In this case, the polymer causes destabilization of the colloidal suspension, which results from charge neutralization of solid particles by adsorbed PAA.  相似文献   

13.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, β-CD and its two derivatives, randomly methylated β-CD (RAMEB) and hydroxypropyl β-CD (HP-β-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of β -CD and HP-β -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated β-CD and HP-β-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

14.
During August, 1982 and January and February, 1983, General Motors Research Laboratories operated air monitoring sites on the Atlantic Coast near Lewes, Delaware and 1250 km to the east on the southwest coast of Bermuda. The overall purpose of this project was to study the transformations of the principal acid precipitation precursors, NO x and SO x species, as they transport under conditions not complicated by emissions from local sources. In this paper, the measurements of gas and particulate species from Lewes are described and the composition and sources of sulfate aerosol, which is the most important haze-producing species, are investigated.

On the average, the total suspended particulate (TSP) concentration was 27.9 μg/m3 while the PM10 (mass of particles with a diameter less than or equal to 10 μm) concentration was 22.0 μg/m3 or 79 percent of the TSP. The PM10 consisted of 6.1 μg/m3 of coarse particles (CPM, diameter = 2.5 ? 10μm) and 15.9 μg/m3 of fine particles (FPM, diameter < 2.5 μm).

On a mass basis the most important constituents of the fine particulate fraction were sulfate compounds, 50 percent, and organic compounds, 30 percent. The mean light extinction coefficient corresponds to a visual range of 18-20 km. Most of the extinction can be attributed to the sulfate (60 percent) and organic carbon (13 percent). Particle size measurements show that the mass median aerodynamic diameter for both species is 0.43 μm. This is a typical size for a hydrated sulfate aerosol. For carbon, however, this is a larger size than previously reported and results in a more efficient light scattering aerosol. Principal component analyses indicate that coal combustion emissions from the midwestern U.S. are the most significant source of sulfate in Lewes during the summer and winter.  相似文献   

15.
Metal oxides have great potential for controlling the fate and transport of viruses in the subsurface and water-treatment systems. The processes, however, are subject to solution chemistry. In this study, a number of column experiments were conducted to examine the effects of solution pH and anions (carbonate and phosphate) on attachment, transport, and inactivation of two bacteriophages (phiX174 and MS-2) in goethite-coated sand medium. Removal of both viruses on goethite-coated sand increased as solution pH decreased from 9.3 to 7.5, due mostly to virus inactivation. MS-2, a relatively hydrophobic virus with a lower isoelectric point (3.9), was more sensitive to the change of solution pH than phiX174, a relatively hydrophilic virus with a higher isoelectric point (6.6), in terms of their attachment and inactivation on goethite. About 90% of the MS-2 particles removed by goethite (accounting for 81% of the total input) were inactivated at pH 7.5, whereas all of the removed MS-2 particles (accounting for 10% of the total input) still remained infectious at pH 9.3. In comparison, approximately 74% of the goethite-bound phiX174 particles (accounting for 95% of the total input) lost their infectivity at pH 7.5, in contrast to a complete recovery at pH 9.3 (accounting for 65% of the total input) when the columns were eluted using a beef extract solution (pH 9.5). Presence of phosphate (20 mM H(2)PO(4)(-)) in input solution reduced virus attachment and appeared to protect the viruses from being inactivated during transport; this effect was more significant on MS-2 than on phiX174. Specifically, approximately 29% of the phiX174 particles and approximately 49% of MS-2 particles injected into the column were removed during transport. Mass recovery data showed that no phiX174 was inactivated in the presence of phosphate, whereas about 38% of the MS-2 particles attached on goethite lost their infectivity. Conversely, presence of carbonate on goethite increased virus attachment and inactivation due to contribution of additional attachment sites from protonated surface groups of the carbonate ions that were adsorbed on goethite. About 70% of the total input viruses (both phiX174 and MS-2) were removed during transport, of which 35% phiX174 and 85% MS-2 were eventually inactivated.  相似文献   

16.
Particle-size-fractioned transfer of dioxins from sediments to water columns by resuspension process was investigated, using supernatant samples obtained from shaking experiments of sediment-water pairs simulating natural disturbances. The concentrations (dry-matter mass basis) of individual compounds (Cfraction) in two particle size fractions (0.1-1 and 1-10 μm) in the supernatants were generally slightly higher than those in the original sediment (Csed). Cfraction/Csed ratios ranged from 0.45 to 5.9 (median 1.5) without consistent differences among congener groups or consistent correlations against the number of chlorine atoms. The dioxin concentrations in the water column associated with the remaining sediment particles can therefore be estimated by those in the original sediment and by the concentration of suspended sediment particles in the water. The concentration of each compound in the remaining sediment particles (mostly 0.1-10 μm in size) can be roughly estimated by multiplying the concentration in the original sediment by 1.5.  相似文献   

17.
The main disadvantage of using iron mineral in Fenton-like reactions is that the decomposition rate of organic contaminants is slower than in classic Fenton reaction using ferrous ions at acidic pH. In order to overcome these drawbacks of the Fenton process, chelating agents have been used in the investigation of Fenton heterogeneous reaction with some Fe-bearing minerals. In this work, the effect of new iron complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), on heterogeneous Fenton and photo-Fenton system using goethite as an iron source was tested at circumneutral pH. Batch experiments including adsorption of EDDS and bisphenol A (BPA) on goethite, H2O2 decomposition, dissolved iron measurement, and BPA degradation were conducted. The effects of pH, H2O2 concentration, EDDS concentration, and goethite dose were studied, and the production of hydroxyl radical (?OH) was detected. The addition of EDDS inhibited the heterogeneous Fenton degradation of BPA but also the formation of ?OH. The presence of EDDS decreases the reactivity of goethite toward H2O2 because EDDS adsorbs strongly onto the goethite surface and alters catalytic sites. However, the addition of EDDS can improve the heterogeneous photo-Fenton degradation of BPA through the propagation into homogeneous reaction and formation of photochemically efficient Fe-EDDS complex. The overall effect of EDDS is dependent on the H2O2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ?? to generate Fe(II) species from Fe(III) reduction. Low concentrations of H2O2 (0.1 mM) and EDDS (0.1 mM) were required as optimal conditions for complete BPA removal. These findings regarding the capability of EDDS/goethite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.  相似文献   

18.
The effect of goethite (α-FeOOH), hematite (α-Fe203) and maghemite (γ-Fe203) on the aqueous photoreduction of divalent mercury with organic acids (oxalate, formate and acetate) is investigated. Laboratory photochemistry experiments with synthetic iron oxides and simulated sunlight were performed to assess the role of the oxides on the photoreduction. Ambient aerosol was also collected and introduced as the solid phase to compare its effect with that of synthetic oxides. It is observed that the presence of various iron oxides or aerosol particles enhances the photoreduction. It is also found that the hydroxyl radicals produced in the hematite-oxalate systems can re-oxidize the reduced mercury back to Hg(II). Based on the experimental observations, mechanisms responsible for the Hg(II) reduction are proposed. The kinetics of Hg0 oxidation by hydroxyl radicals was also studied by a steady-state kinetic technique using nitrate photolysis as the * OH radical source. The second-order rate constant is determined to be 2.0 × 109 M s−1. The implications of the studied reactions on the atmospheric chemistry of mercury are discussed.  相似文献   

19.
Although the toxicological impact of metal oxide nanoparticles has been studied for the last few decades on aquatic organisms, the exact mechanism of action is still unclear. The fate, behavior, and biological activity of nanoparticles are dependent on physicochemical factors like size, shape, surface area, and stability in the medium. This study deals with the effect of nano and bulk CeO2 particles on marine microcrustacean, Artemia salina. The primary size was found to be 15 ± 3.5 and 582 ± 50 nm for nano and bulk CeO2 (TEM), respectively. The colloidal stability and sedimentation assays showed rapid aggregation of bulk particles in seawater. Both the sizes of CeO2 particles inhibited the hatching rate of brine shrimp cyst. Nano CeO2 was found to be more toxic to A. salina (48 h LC50 38.0 mg/L) when compared to bulk CeO2 (48 h LC50 92.2 mg/L). Nano CeO2-treated A. salina showed higher oxidative stress (ROS) than those treated with the bulk form. The reduction in the antioxidant activity indicated an increase in oxidative stress in the cells. Higher acetylcholinesterase activity (AChE) was observed upon exposure to nano and bulk CeO2 particles. The uptake and accumulation of CeO2 particles were increased with respect to the concentration and particle size. Thus, the above results revealed that nano CeO2 was more lethal to A. salina as compared to bulk particles.  相似文献   

20.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号