首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Photovoltaic (PV) system produces electricity that differs from variations in environmental parameters such as temperature and solar radiation. The PV network will operate at maximum power point (MPP) and deal with an ever-increasing energy demand, that changes from both load and weather conditions.” Moreover, energy storage devices could be a potential solution for improving the efficiency and performance of renewable energy sources (RES). This paper intends to establish a control design by an optimization-assisted PI controller for a 7-level inverter. Accordingly, the gains of PI controller are adjusted dynamically by FireFly Integrated-Sea Lion Optimization algorithm (FFI-SLnO) that integrates the concepts of both Sea Lion Optimization (SLnO) and FireFly algorithm (FF). The gains should be tuned such that the error among the reference signal and fault signal should be low and hence better dynamic performance can be obtained by the presented optimized PI controller. Finally, the performance of the proposed method is compared over other traditional models with respect to certain measures and its superiority is proved.

  相似文献   

2.
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.  相似文献   

3.

Replacing conventional fossil fuel power plants with large-scale renewable energy sources (RES) is a crucial aspect of the decarbonization of the power sector and represents a key part of the carbon-neutral strategy of China. The high penetration rate of renewable energy in the electricity system, however, implies the challenges of dealing with the intermittency and fluctuation of RES. Power to gas (P2G), which can convert surplus renewable power into a chemical form of energy (i.e., synthetic gas), can help handle this challenge and supply new energy carriers for various energy sectors. By modeling three potential 2060 energy mix scenarios in China, this paper aims to describe the possible contribution of the high penetration rate of renewable energy combined with P2G in the future sustainable energy system. Different schemes are listed and compared, and the results are used in a basic economic evaluation of the synthetic gas production cost for the P2G plants. Ideally, nearly 18 million tons of carbon dioxide would be recycled and transformed into methane (around 9.37 km3) annually in China. Considering a zero price for the excess renewable power and future costs of the components, the levelized cost of energy (LCOE) of the final production of methane is estimated at 0.86 $/m3SNG.

  相似文献   

4.

Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.

Graphical abstract
  相似文献   

5.
污水处理的高能耗和新能源利用已引起人们的关注,本文根据太阳光照强度的周期变化和农村污水昼夜排放量悬殊的特征,提出了一种新型的利用无蓄电池太阳能光伏系统驱动的污水生物处理系统,可有效降低太阳能光伏系统的成本。生物反应器是一个双沟式一体化氧化沟。按照启动的用电设备的数量,一体化氧化沟具有5种运行方式。在不同的运行方式下,一体化氧化沟的内沟和外沟具有不同的功能,其中运行方式3到运行方式5对污染物去除效率最高。采用阶梯型电量输出模式,可以充分利用太阳能,并保障一体化氧化沟的高效运行时间。在160 d的连续运行实验中,COD、氨氮、总氮和总磷的平均去除率分别为87.8%、98.4%、68.7%和80.3%。证明无蓄电池太阳能光伏系统驱动污水生物反应器处理农村分散污水是可行的。  相似文献   

6.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H2 production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

7.
Abstract

The effects of temperature and solar radiation on dissipation of 14C‐p,p'‐DDT from a latosol soil were studied under laboratory conditions. Volatilization was measured by trapping organic volatiles during 6 weeks and was found to increase with rise of temperature from 3.8% of initial amount at ambient temperature to 5.9% at 45°C.

Studies on the effect of solar radiation using quartz tubes under sterilized and non‐sterilized conditions have shown that volatilized organics were highest in quartz tubes, with soil microflora presumably playing a very minor role in volatilization. Mineralization was shown to be low in sterilized systems and highest in non‐sterilized quartz systems. Studies on binding suggest that soil bioactivity may be involved in the formation of a portion of the bound residue. These laboratory experiments seem to support data from the field, where it is maintained that volatilization is a major mechanism for dissipation. Degradation in soil and to a lesser extent solar irradiation contribute also substantially to the dissipation mechanisms. Radiocarbon dissipated from plywood surfaces under indoor conditions in a biphasic fashion. Loss of 50% occurred after 5.5 weeks while the remainder dissipated at a very slow rate.  相似文献   

8.

As an important renewable energy source, wind power plays a key role in mitigating climate change and has become one of the fastest growing clean energies globally. In China, wind energy development has been a vital component of national energy transformation strategy. Over the years, the Chinese government has introduced a series of policies to promote the development of wind power and also to regulate this emerging industry. Base on examining all the key policy documents on wind power issued by the Chinese government over the last 30 years, we find that China has built up a comprehensive policy system, and summarized the current framework of Chinese wind power policy systematically. Then, we analyze the policy objectives, policy tools, major measures, their results in each development stage, and the characteristics and trends of China’s wind power policies. Finally, we discuss the limitations of the current policy and put forward corresponding suggestions.

  相似文献   

9.
Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3 %, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.  相似文献   

10.
ABSTRACT

The UV and global solar radiation on a horizontal surface at ground level in Riyadh City (latitude 24° 34' N, longitude 46° 43' E) have been measured and analyzed. Measurements of UV radiation (295-385 nm) were recorded every 10 min for five years (January 1983-December 1987). The maximum recorded hourly mean irradiance UV radiation was 28 W/m2 and occurred in July, while the minimum was 14 W/m2 in December.  相似文献   

11.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

12.
Environmental Science and Pollution Research - Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy...  相似文献   

13.

The COVID-19 pandemic has a close relationship with local environmental conditions. This study explores the effects of climate characteristics and air pollution on COVID-19 in Isfahan province, Iran. A number of COVID-19 positive cases, main air pollutants, air quality index (AQI), and climatic variables were received from March 1, 2020, to January 19, 2021. Moreover, CO, NO2, and O3 tropospheric levels were collected using Sentinel-5P satellite data. The spatial distribution of variables was estimated by the ordinary Kriging and inverse weighted distance (IDW) models. A generalized linear model (GLM) was used to analyze the relationship between environmental variables and COVID-19. The seasonal trend of nitrogen dioxide (NO2), wind speed, solar energy, and rainfall like COVID-19 was upward in spring and summer. The high and low temperatures increased from April to August. All variables had a spatial autocorrelation and clustered pattern except AQI. Furthermore, COVID-19 showed a significant association with month, climate, solar energy, and NO2. Suitable policy implications are recommended to be performed for improving people’s healthcare and control of the COVID-19 pandemic. This study could survey the local spread of COVID-19, with consideration of the effect of environmental variables, and provides helpful information to health ministry decisions for mitigating harmful effects of environmental change. By means of the proposed approach, probably the COVID-19 spread can be recognized by knowing the regional climate in major cities. The present study also finds that COVID-19 may have an effect on climatic condition and air pollutants.

  相似文献   

14.
State space models for tropospheric urban ozone prediction are introduced and compared with linear regression models. The linear and non-linear state space models make accurate short-term predictions of the ozone dynamics. The average prediction error one hour in advance is 7 μg/m3 and increases logarithmically with time until it reaches 26 μg/m3 after 30 days. For a given sequence of solar radiation inputs, predictions converge exponentially with a time scale of 8 hours, so that the model is insensitive to perturbations of more than 150 μg/m3 O3. The slow increase of the prediction error in addition to the uniqueness of the prediction are encouraging for applications of state space models in forecasting ozone levels when coupled with a model that predicts total radiation. Since a radiation prediction model will be more accurate during cloud-free conditions, in addition to the fact that the state space models perform better during the summer months, state space models are suitable for applications in sunny environments.  相似文献   

15.

The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.

  相似文献   

16.
ABSTRACT

Five different models of dosimeters were compared in the Chernobyl Inner Exclusion Zone by measuring gamma radiation in 12 locations. We used an instrument made by Mirion Technologies, Inc., as the reference, since that instrument had an NIST-traceable calibration. Two models of dosimeters gave radiation values similar to the Mirion at all levels of radiation encountered. Two other models gave similar values to the Mirion instrument at low radiation levels but not at higher radiation levels encountered. These results offer a caution regarding the accuracy of inexpensive commercially available radiation instruments.

Implications: Comparison of gamma ray dosimeters in the Chernobyl Exclusion Zone showed varying agreement with an NIST-calibrated instrument, as well as varying linearity of response to ambient radiation. These results suggest caution regarding accuracy of inexpensive dosimeters. However, dosimeters used that were manufactured in Ukraine exhibited good agreement with the reference instrument.  相似文献   

17.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

18.
ABSTRACT

Evaluation of alternate strategies for municipal solid waste (MSW) management requires models to calculate environmental emissions as a function of both waste quantity and composition. A methodology to calculate waste component-specific emissions associated with MSW combustion is presented here. The methodology considers emissions at a combustion facility as well as those avoided at an electrical energy facility because of energy recovered from waste combustion. Emission factors, in units of kg pollutant per metric ton MSW entering the combustion facility, are calculated for CO2-biomass, CO2-fossil, SOx , HCl, NOx , dioxins/furans, PM, CO, and 11 metals. Water emissions associated with electrical energy offsets are also considered. Reductions in environmental emissions for a 500-metric-ton-per-day combustion facility that recovers energy are calculated.  相似文献   

19.

This review highlights and summarizes the impact of different fabrication processes on the efficiency of dye-sensitized solar cells (DSSCs). Energy conversion efficiency of cell depends upon semiconductor, sensitizer, electrolyte, and counter electrode. Efficiency of DSSCs can be enhanced by properly selecting the optimum significance of various parameters of fabrications process. Major challenges of these solar cells are non-vegetal, noxious, extreme sensitizers. Application of natural dyes in this field plays a significant role. An optimized CdSe-TiO2 photoanode showed a power conversion efficiency (PCE) of 13.29% and short circuit current density of 15.30 mA cm?2 for the DSSC. Power conversion efficiency of 3.26% was achieved by using TTO electrode for DSSC device that is ascribed to the improved electrical and optical properties due to doping with Ta element. Absorbance of betalain was shown in the visible range of 530–535 nm for betanin while 450–559 nm for anthocyanin pigment. The natural dyes are economical, readily available, and environmentally friendly. This compilation would be beneficial for researchers working on dye solar cell.

  相似文献   

20.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号