首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

2.
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L?1) in nutrient solution. When doses were equal or higher than 8 mg Cu L?1, after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L?1 significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.  相似文献   

3.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

4.
Guan TX  He HB  Zhang XD  Bai Z 《Chemosphere》2011,82(2):215-222
Fertilization of crops with livestock manure (LM) is a common waste disposal option, but repeated application of LM containing high concentrations of heavy metals such as Cu could lead to crop toxicity and environmental risk. To examine the Cu availability and uptake by wheat in a Mollisol affected by Cu-enriched LM, pot experiments were conducted. LM (376 mg kg−1 Cu originally) was spiked with different concentrations of Cu (0, 100, 200, 400, 600 and 800 mg kg−1 soil, added as CuSO4) to simulate soil Cu contamination by LM application. The results indicated that Cu was predominately distributed in organic bound fraction, while the most drastic increase was found in reducible fraction. Acid-extractable fraction played a more important role than other fractions in controlling the mobility and bioavailability of Cu. DTPA-extractable Cu may overestimate the Cu bioavailability since DTPA solution could extract soluble and part of stable forms. The application of LM at 1% level significantly decline the Cu mobility, but that at 3% level exhibited the opposite effect.Although the quantities of Cu in wheat was very low compared with the accumulation in soil, Cu concentrations in roots increased evidently from 12 to 533 mg kg−1 and that in aerial parts were in a narrow range from 12.1 to 32.7 mg kg−1, indicating the more sensitivity of roots to the Cu toxicity. The Cu concentrations in grains after 3% manure application did not approach the threshold for Cu toxicity (<20 mg kg−1) even at higher Cu addition rates.  相似文献   

5.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

6.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

7.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

8.

When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg?1) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg?1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg?1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal.

The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers

  相似文献   

9.
Effects of silicon and copper on bamboo grown hydroponically   总被引:1,自引:0,他引:1  
Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. “Malay Dwarf ” was performed. The bamboo plants were first submitted to a range of Si supplementation (0–1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 μM Cu2+ was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g?1 in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg?1), but was also found in leaves (16.6 mg kg?1) and stems (9.8 mg kg?1). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.  相似文献   

10.

Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg?1 rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L?1 Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg?1 soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg?1 manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg?1), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

11.
Leccinum scabrum is an edible mushroom common in European regions in the northern hemisphere. Macro and trace mineral constituents such as Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn were studied in L. scabrum and in the top soil collected from the same location underneath soil substratum. The “pseudo-total” and labile (extractable fraction of minerals) were measured to get insight into the levels, distribution between the morphological parts of fruiting bodies, potential for their bioconcentration by mushroom and evaluated for human exposure via consumption of the mushroom. The sampling sites include the Dar?lubska Wilderness, Trójmiejski Landscape Park, Sobieszewo Island, Wdzydze Landscape Park and outskirts of the K?trzyn town in Mazury from the norther part of Poland. Median values of K, Rb and P concentrations in dehydrated L. scabrum were for caps in range 27,000–44,000 mg kg?1, 90–320 mg kg?1 and 6,200–9,100 mg kg?1, and followed by Mg at 880–1,000 mg kg?1, Ca at 48–210 mg kg?1 and Al at 15–120 mg kg?1. The median concentrations of Cu, Fe, Mn and Zn in caps were in range 15–27 mg kg?1 db 38–140 mg kg?1, 5.3–27 mg kg?1 and 130–270 mg kg?1. For Ba and Sr, concentrations on the average were at ~1 mg kg?1, and almost equally distributed between the caps and stipes of the fruiting bodies. L. scabrum mushrooms were low in toxic Ag, Cd, Hg and Pb, for which the median values in dried caps from five locations were, respectively, in range 0.48–0.98 mg kg?1 (cap to stipe index, QC/S, was 2.5–4.1), 1.0–5.8 mg kg?1 (QC/S 2.9–3.8), 0.36–0.59 mg kg?1 (QC/S 1.6–2.7) and 0.20–0.91 mg kg?1 (QC/S 1.2–1.9). Substantial variations in the concentrations of the “pseudo-total” fraction (extracted by aqua regia) or labile fraction (extracted by 20% solution of nitric acid) of the elements determined in forest topsoils were noted between some of the locations examined. The elements K, P, Cd, Cu, Hg, Mn, Na, Rb and Zn can be considered as those which were bioconcentrated by L. scabrum in fruiting bodies, while the rates of accumulation varied with the sampling location.  相似文献   

12.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

13.
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg?1 Cd), Zn (150–2,400 mg kg?1 Zn) or Cd + Zn (20?+?150, 40?+?300, 80?+?600 mg kg?1). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g?1 for Cd and 1,300 μg g?1 for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg?1 Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.  相似文献   

14.
Antibiotics are extensively given to livestock to promote growth and reduce diseases. Therefore, animal manure often contains antibiotics. Once manure is applied to agricultural land to improve soil productivity, crops would be exposed to antibiotics which may persist in soils from a few to several hundred days. The objective of this study was to evaluate the uptake of gentamicin and streptomycin by carrot (Daucus carota), lettuce (Lactuca sativa) and radish (Rhaphanus sativus) from manure-amended soil. The treatments were 0, 0.5 and 1 mg of antibiotic kg?1 of soil. Two pot experiments were carried out in the greenhouse. The first was conducted on the three crops and the second exclusively on radish. In radish, the increase in the concentrations of gentamicin was significant between the 0 and both of 0.5 and 1.0 mg kg?1 treatments, but not significant between the 0.5 and 1.0 mg kg?1. The average values were 35.5, 60.0 and 57.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. However, the increase in streptomycin concentration in radish was not significant between the three treatments, and the average values were, 12.1, 15.2 and 17.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. In carrot roots and lettuce leaves no significant increase in the concentrations of gentamicin or streptomycin was observed between the treatments. The three crops absorbed relatively higher amounts of gentamicin (small molecule) than streptomycin (large molecule). Generally the levels of antibiotics in plant tissue increased with increasing the antibiotic concentration in the manure (1 mg kg?1 > 0.5 mg kg?1).  相似文献   

15.
Lead (Pb) has been highlighted as a major pollutant of both terrestrial and aquatic ecosystems, causing negative impacts to these environments. The concentration of Pb in plants has increased in recent decades, mainly due to anthropogenic activities. This study has as a hypothesis that the species Oxycaryum cubense (Poep. & Kunth) Palla, abundant in aquatic environments, has the potential to be used a phytoremediator. The plants were grown in a hydroponic system with Pb in increasing concentrations (0, 4, 8, 16 and 32 mg l?1) for 15 days. Inductively coupled mass spectrometer (ICP OES) was used to determine the concentration of mineral nutrients and lead. Optical and transmission electron microscopy were used for the analysis of cellular damage induced by lead in roots and leaves. Ultrastructural alterations were observed as disorganization of thylakoids in the chloroplast and disruption of mitochondrial membranes in cells of leaf tissues of plants subjected to increasing Pb concentrations. There was accumulation of Pb, especially in the root system, affecting the absorption and translocation of some mineral nutrients analysed. In roots, there was reduction in the thickness of the epidermis in plants treated with Pb. This species was shown to be tolerant to the Pb concentrations evaluated, compartmentalizing and accumulating Pb mainly in roots. Due to these results, it may be considered a species with phytoremediation capacity for Pb, with potential rizofiltration of this metallic element in contaminated watersheds.  相似文献   

16.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl2 solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

17.
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L?1) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L?1) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L?1) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L?1) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.  相似文献   

18.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

19.
One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p?<?0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p?<?0.05), and some influence on vegetable leaves (p?<?0.05), but no significant influence on Hg accumulation in grass leaves (p?>?0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g–1, respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m–3.  相似文献   

20.
A study of the in vitro sensitivity of 12 isolates of Phytophthora infestans to metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb, was conducted. The isolates derived from infected potato leaves collected at eight different localities in Serbia during 2005–2007. The widest range of EC50 values for mycelial growth of the isolates was recorded for metalaxyl. They varied from 0.3 to 3.9 μg mL?1 and were higher than those expected in a susceptible population of P. infestans. The EC50 values of the isolates were 0.16–0.30 μg mL?1 for dimethomorph, 0.27–0.57 μg mL?1 for cymoxanil, 0.0026–0.0049 μg mL?1 for zoxamide and 2.9–5.0 μg mL?1 for mancozeb. The results indicated that according to effective concentration (EC50) the 12 isolates of P. infestans were sensitive to azoxystrobin (0.019–0.074 μg mL?1), and intermediate resistant to metalaxyl, dimethomorph and cymoxanil. According to resistance factor, all P. infestans isolates were sensitive to dimethomorph, cymoxanil, mancozeb and zoxamide, 58.3% of isolates were sensitive to azoxystrobin and 50% to metalaxyl. Gout's scale indicated that 41.7% isolates were moderately sensitive to azoxystrobin and 50% to metalaxyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号