首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N2O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N2O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m2-day). The total emission in the WWTP (including carbon dioxide, methane, and N2O) would decrease by 46 % (from 0.67 to 0.36 kg CO2-equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  相似文献   

2.
Background, aim, and scope

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.

Materials and methods

The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide.

Results and discussion

The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400–2,000 g/day), carbamazepine (78–213 g/day), galaxolide (140–684 g/day), ibuprofen (84–108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP’s removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2–3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants).

Conclusions

The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters.

Recommendations and perspectives

Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.

  相似文献   

3.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

4.

Data reconciliation and mass balance analysis were conducted for the first time to improve the data obtained from a petrochemical wastewater treatment plant (WWTP), and the results were applied to evaluate the performance of the plant. Daily average values for 209 days from the inlet and outlet of the plant obtained from WWTP documentation center along with the results of four sampling runs in this work were used for data reconciliation and performance evaluation of the plant. Results showed that standard deviation and relative errors in the balanced data of each measurement decreased, especially for the process wastewater from 24.5 to 8.6 % for flow and 24.5 to 1.5 % for chemical oxygen demand (COD). The errors of measured data were −137 m3/day (−4.41 %) and 281 kg/day (7.92 %) for flow and COD, respectively. According to the balanced data, the removal rates of COD and 5-day biological oxygen demand (BOD5) through the aeration unit were equal to 37 and 46 %, respectively. In addition, the COD and BOD5 concentrations were reduced by about 61.9 % (2137 kg/day) and 78.1 % (1976 kg/day), respectively, prior to the biological process. At the same time, the removal rates of benzene, toluene, and styrene were 56, 38, and 69 %, respectively. The results revealed that about 40 % of influent benzene (75.5 kg/day) is emitted to the ambient air at the overhead of the equalization basin. It can be concluded that the volatilization of organic compounds is the basic mechanism for the removal of volatile organic compounds (VOCs) and it corresponds to the main part of total COD removal from the WWTP.

  相似文献   

5.

Research on the current strategic interaction of local governments in air pollution control is a key breakthrough. Based on the theory of Chinese style decentralization, this paper puts forward a theoretical framework to explain the incomplete enforcement of air pollution regulation. Using the panel data of 30 provinces in China from 2004 to 2016, this study employs spatial Durbin model, empirically tested the inter-regional strategic interaction of air pollution regulation, and further explores the effect of performance assessment indicators on this strategic interaction. The main conclusions of this paper are as follows: (1) Empirical results confirm that adjacent provinces do exist strategic interaction of air pollution regulation. Furthermore, the strategic interaction of air pollution regulation belongs to complementarities. (2) Meanwhile, from a regional perspective, due to the low level of economic development stock and the low level of air pollution, the interaction effect of air pollution regulation strategies in northwestern region is weaker than that in southeastern region. (3) In addition, under the national sample and the southeast sample, the air environment performance assessment indicators weaken the inter-regional strategic interaction of air pollution regulation, and economic performance assessment indicators on the contrary.

  相似文献   

6.

Background, aim, and scope

According to the high incidence of cancer worldwide, the amount of cytostatic drugs administered to patients has increased. These compounds are excreted to wastewaters, and therefore become potential water contaminants. At this stage, very little is known on the presence and elimination of cytostatic compounds in wastewater treatment plants (WWTP). The aim of this study was to develop a liquid chromatography?Chigh-resolution mass spectrometry (LC?COrbitrap?CMS) method for the determination of cyclophosphamide and epirubicin in wastewaters. These compounds represent two outmost used cytostatic agents.

Materials and methods

Extraction and analytical conditions were optimized for cyclophosphamide and epirubicin in wastewater. Both solid-phase extraction using Oasis 200?mg hydrophilic?Clipophilic balanced (HLB) cartridges and direct injection analysis were evaluated. Mass spectral characterization and fragmentation conditions were optimized at 50,000 resolving power (full width at half maximum, m/z 200) to obtain maximum sensitivity and identification performance. Quality parameters (recoveries, limits of detection, and repetitivity) of the methods developed were determined, and best performance was obtained with direct water analysis of the centrifuged wastewater. Finally, this method was applied to determine the presence of cyclophosphamide and epirubicin in wastewaters from a hospital effluent, an urban effluent, and influents and effluents from three WWTP.

Results and discussion

Cyclophosphamide and epirubicin were recovered after 50?mL preconcentration on solid-phase extraction 200?mg Oasis HLB cartridges (87% and 37%, respectively), and no breakthrough was observed by extracting 500?mL of water. Limits of detection were of 0.35 and 2.77?ng/L for cyclophosphamide and epirubicin, respectively. On the other hand, direct injection of water spiked at 1???g/L provided recoveries of 107% for cyclophosphamide and 44% for epirubicin and limits of detection from 3.1 to 85?ng?L?1, respectively. The analysis of wastewaters using direct injection analysis revealed the presence of cyclophosphamide and epirubicin in WWTP influents and hospital and urban effluents at levels ranging from 5.73 to 24.8???g?L?1.

Conclusions

The results obtained in this study demonstrate the capability of LC?COrbitrap?CMS for accurate trace analysis of these very polar contaminants. This method permitted to identify cyclophosphamide and epirubicin in wastewaters and influents of WWTP, but no traces were detected in WWTP effluents. The methodology herein developed is sensitive and robust and applicable for screening of a large number of samples since no preconcentration is needed.  相似文献   

7.
Abstract

A greenhouse gas (GHG) mitigation-induced rough-interval programming model is proposed in this study. Components of GHG emission and environmental pollution control are incorporated into the objective function and a series of relevant constraints. To explicitly examine more complexities existing in many parameters, rough intervals are also communicated into the modeling framework. The proposed model presents satisfactory capabilities in analyzing complicated interrelationships among municipal solid waste (MSW) management, climate-change impact, and environmental pollution control. It can also provide optimal allocation schemes and facilitate decision-makers regulating environmentally sustainable strategies. The developed model is then applied to a case study for demonstrating its applicability. Two representative scenarios (relatively representing two potential management policies that may be implemented in the future years) are considered. The results indicate that the developed model presents advantages in mitigating GHG emissions and the associated climate-change impact. The comparison between the GHG mitigation-induced model with and without rough-interval parameters is also investigated. Completely different solutions of the two models imply the significant impact of dual-uncertain information on the system, which can hardly be addressed through the existing optimization approaches.  相似文献   

8.
Abstract

The management of tropospheric ozone (O3) is particularly difficult. The formulation of emission control strategies requires considerable information including: (1) emission inventories, (2) available control technologies, (3) meteorological data for critical design episodes, and (4) computer models that simulate atmospheric transport and chemistry. The simultaneous consideration of this information during control strategy design can be exceedingly difficult for a decision-maker. Traditional management approaches do not explicitly address cost minimization. This study presents a new approach for designing air quality management strategies; a simple air quality model is used conjunctively with a complex air quality model to obtain low-cost management strategies. A simple air quality model is used to identify potentially good solutions, and two heuristic methods are used to identify cost-effective control strategies using only a small number of simple air quality model simulations. Subsequently, the resulting strategies are verified and refined using a complex air quality model. The use of this approach may greatly reduce the number of complex air quality model runs that are required. An important component of this heuristic design framework is the use of the simple air quality model as a screening and exploratory tool. To achieve similar results with the simple and complex air quality models, it may be necessary to “tweak” or calibrate the simple model. A genetic algorithm-based optimization procedure is used to automate this tweaking process. These methods are demonstrated to be computationally practical using two realistic case studies, which are based on data from a metropolitan region in the United States.  相似文献   

9.
The body of information presented in this paper is provided as an orientation to instrument developers and users, and those individuals concerned with the measurement of pollutant emissions from stationary sources.

A system concept is presented and shows six unit operations comprising a complete measurement system. These operations include sample site selection, sample transport, sample treatment, sample analysis, data reduction and display, and data interpretation.

Five measurement approaches are discussed. The first two involve sample extraction from within the stack. The remaining three are new techniques using conventional and advanced electro-optical methods. The new approaches include in situ monitoring, remote sensing, and long-path sensing.

Attention is focused on the performance requirements of interface systems required to couple analyzers to sources for sample extraction. Current status of instrumentation is summarized in terms of commercially available systems, research and prototype developments, and feasibility studies for each of the five approaches.  相似文献   

10.
The aim of this study was to develop a fugacity-based analysis of the fate of selected industrial compounds (alkylphenols and phthalates) with endocrine disrupting properties in a conventional activated sludge wastewater treatment plant (WWTP A) in South East Queensland, Australia. Using mass balance principles, a fugacity model was developed for correlating and predicting the steady-state-phase concentrations, the process stream fluxes, and the fate of four phthalates and four alkylphenols in WWTP A. Input data are the compound's physicochemical properties, measured concentrations and the plant's operating design and parameters. The relative amounts of chemicals that are likely to be volatilized, sorbed to sludge, biotransformed, and discharge in the effluent water was determined. Since it was difficult to predict biotransformation, measured concentrations were used to calibrate the model in terms of biotransformation rate constant. Results obtained by applying the model for the eight compounds showed <40% differences between most of the estimated and measured data from WWTP A. All eight compounds that were modelled in this study had high removal efficacy from WWTP A. Apart from benzyl butyl phthalate and bisphenol A, the majority is removed via biotransformation followed by a lesser proportion removed with the primary sludge. Fugacity analysis provides useful insight into compound fate in a WWTP and with further calibration and validation the model should be useful for correlative and predictive purposes.  相似文献   

11.
The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

Implications: Estimating emissions to the atmosphere is usually considered a complex task, especially when such discharge comes from diffuse or uncontrolled sources. In any approach to air quality control, just from the point of view of increasing knowledge or as a management problem in order to reduce present levels of pollution, accurate estimation of emission rates is revealed as a fundamental step. Evaluation from an indirect method provides a useful methodology in such cases. Combination of dispersion modeling with experimental air concentration measurements permits one to obtain a first estimation of H2S emission rates at several wastewater treatment plants. In a subsequent refinement of the process, the initial constant average emissions calculated were improved, leading to the formulation of a time-varying emission model, as a function of environmental quantities.  相似文献   

12.

Purpose

This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign.

Methods

Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP.

Results

Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank.

Conclusions

The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.  相似文献   

13.
ABSTRACT

Photochemical air quality simulation models are now used widely in evaluating the merits of alternative emissions control strategies on spatial scales from metropolitan to sub-continental. Greatly varying levels of resources have been available to support modeling, from relatively comprehensive databases and evaluation of performance to a paucity of aerometric data for developing model inputs. Where data are sparse, many alternative outcomes are consistent with the knowledge at hand. Where performance evaluation is inadequately supported, the probability of error may be high. In each instance, uncertainties may be large when compared with the signal of interest, and thus confidence in the reliability of the model as an estimator of future air quality may come into question.

This paper proposes a qualitative procedure for assessing whether a particular application of a modeling system is likely to be potentially unreliable, suggesting that either (1) modification and further evaluation is needed, if supportable, prior to adoption for regulatory application; or (2) the model should not be used if improvement is not supportable. The procedure is proposed for use by policy-makers, staffs of public agencies, air quality managers, environmental staffs of industrial organizations, and other interested parties. The proposed use of the procedure is (1) to assess, a priori, whether a proposed application is likely to be judged questionable or unacceptably uncertain in outcome; and (2) to provide, a posteriori, a basis for judging quickly the likely quality of model performance. The procedure is presented with tropospheric ozone as the pollutant of concern. With adjustments, however, the procedure should be applicable for particu-late matter and other pollutants of interest.  相似文献   

14.
In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM10], sulfur dioxide [SO2], and nitrogen oxides [NOx]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants.

Implications: The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality.

Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.  相似文献   


15.

This study is premised on Indonesia’s climate goal amidst good economic performance. To test the environmental implication of this macroeconomic performance of Indonesia, we adopt Indonesian quarterly data of 1990Q1–2018Q4 for empirical analysis. Relevant instruments in the economic performance of Indonesia such as urbanization, foreign direct investment (FDI), and renewable energy source are all adopted for accurate estimations and analysis of this topic. Different approaches (structural break test, autoregressive distributed lag (ARDL)-bounds testing and Granger causality) are all adopted in this study. Our analysis and policy recommendations are based on the short-run and long-run ARDL dynamics and Granger causality. Findings from ARDL confirmed negative relationship between carbon emission and renewable energy source, FDI, and urbanization. Also, a U-shape instead of inverted U-shaped EKC is found confirming the impeding implication of Indonesian economic growth to its environmental performance if not checkmate. From Granger causality analysis, all the variables are seen transmitting to urbanization in a one-way causal relationship. Also, FDI and renewable energy prove to be essential determinants of the country’s environment development; hence, FDI is seen transmitting to both energy sources (fossil fuels and renewables) in a one-way causal relationship. Renewable energy is as well seen having two ways causal relationship with both carbon emission and fossil fuels. This result has equally exposed the significant position of the three instruments (urbanization, FDI, and renewable energy source) in Indonesian environment development.

  相似文献   

16.
Pagsuyoin SA  Lung WS  Colosi LM 《Chemosphere》2012,87(10):1111-1118
The fate and transport of endocrine disrupting chemicals (EDCs) in ambient river waters is a major concern associated with effluents from municipal wastewater treatment plants (WWTPs). This paper presents a methodology for quantifying the spatial distribution of EDCs in a river mixing zone. The core of the technical analysis is based on a two-dimensional steady-state analytical model characterized by ambient turbulence in the receiving water. This model was first calibrated with mass transport data from field measurements for a conservative substance (electrical conductivity) and then used to predict aqueous-phase EDC concentrations throughout a WWTP mixing zone. To demonstrate the usefulness of this methodology for water quality management purposes, the modeling framework presented in this paper was used to determine a lumped in-stream attenuation rate constant (kd = 3 d−1) for 17β-estradiol under natural conditions. This rate constant likely accounts for the combined contributions of physical sorption, photolysis, microbial and chemical degradation, and the measured value is highly consistent with previously published results from bench-scale removal experiments.  相似文献   

17.
The Air Quality Control Program of the Commonwealth of Massachusetts has developed an implementation plan for the Metropolitan Boston Intrastate Air Quality Control Region as required by PL 90-148. An essential part of the plan was a set of control regulations designed to achieve and maintain an air quality compatible with adopted standards. Control strategy modeling was used as a tool in selecting the most appropriate regulations to achieve this goal. The body of information presented in this paper is directed to those state and county air pollution control officials concerned with the formulation and evaluation of regulations.

The paper details the procedures developed and presents a case history of their use in the region. The system is a synthesis of generally-available software and newly-developed computer programs to provide ahighly automated computational structure. It permits rapid simulation of the emissions resulting from the application of various control regulations. Predictions on the changes expected in ambient air quality levels are then made by the use of the Air Quality Display Model (AQDM).

The initial step in the application was a calibration of the system using predicted and measured annual concentrations. This step yielded correlation coefficients of 0.92 for sulfur dioxide and 0.85 for particulates. Subsequently, the system was used to evaluate the baseline case of uncontrolled sulfur in fuel use. Alternative sulfur control strategies were tested for compatibility with air quality standards. The principal strategies tested were: (a) 1% sulfur uniformly throughout the region; (6) 1% sulfur in core area of region, 2.2% sulfur elsewhere; (c) 0.5% sulfur in core area of region, 2.2% sulfur elsewhere; (d) 0.5% sulfur in core area of region, 1.0% sulfur elsewhere.

Strategies (b) and (d) were implemented into a time phased set of control regulations for the region.

Experience with the system has shown it to be a convenient and rapid method for simulating the effects of control regulations. Furthermore, the utility of this initial model warrants expansion of its application to the other air quality control regions in the Commonwealth.  相似文献   

18.
Abstract

Greenhouses are enclosed structures which have various characteristics that enhance crop productivity, but the implications for workers’ pesticide exposure and uptake are not well understood. A narrative literature review was conducted to explore the mechanism/s of interactions between greenhouse characteristics and occupational pesticide exposure. Using a “work”, “worker” and “workplace” conceptual framework, the greenhouse environment (hot and humid microclimate, limited space and dense crop arrangements) combines with work characteristics (high work and pesticide use intensity, multi-tasking, predominantly manual spraying techniques and quick reentry to treated farms) to potentially increase occupational pesticide exposure, compared with open field farming. Greenhouse environments, are variable but have been shown to influence pesticide availability, route, pathways and frequency of exposure, deposition and distribution on a worker’s body as well as use and performance of exposure control methods. Training programs can emphasize the differences in exposure potential between greenhouse and open field farming. Development of tailored guidelines for exposure control strategies to better suit the level of uniqueness of greenhouse agriculture seems warranted.  相似文献   

19.
The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17α-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O3 g DOC−1 increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process.  相似文献   

20.
Aeration consumes about 60% of the total energy use of a wastewater treatment plant (WWTP) and therefore is a major contributor to its carbon footprint. Introducing advanced process control can help plants to reduce their carbon footprint and at the same time improve effluent quality through making available unused capacity for denitrification, if the ammonia concentration is below a certain set-point. Monitoring and control concepts are cost-saving alternatives to the extension of reactor volume. However, they also involve the risk of violation of the effluent limits due to measuring errors, unsuitable control concepts or inadequate implementation of the monitoring and control system. Dynamic simulation is a suitable tool to analyze the plant and to design tailored measuring and control systems. During this work, extensive data collection, modeling and full-scale implementation of aeration control algorithms were carried out at three conventional activated sludge plants with fixed pre-denitrification and nitrification reactor zones. Full-scale energy savings in the range of 16-20% could be achieved together with an increase of total nitrogen removal of 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号