首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli and total coliforms in water and sediments at lake marinas   总被引:2,自引:0,他引:2  
Escherichia coli, a fecal coliform, and total coliforms were monitored between September 1999 and October 2001 in five marinas at Lake Texoma, located on the Oklahoma and Texas border. The general trend was that densities of E. coli were lower in the summer season due to the lower loading of fecal material into Lake Texoma and the ecological conditions of the lake, such as more vigorous grazing by protozoa and less viability of E. coli at an elevated temperature. The densities of total coliforms greatly increased in the summer. E. coli levels increased with depth, and the bottom water samples had higher densities of E. coli mainly due to their association with particles. There was a direct relationship between amount of gasoline sold, which was related to recreational boating activity, and the resuspension of E. coli. This indicated that recreational boating activity in lake marinas may have resuspended bottom sediments with bound E. coli, and the presence of E. coli in marinas was not an indication of recent fecal contamination. E. coli were detected in the largest densities at the boat dock points, followed by the gasoline filling station, and marina entrance. In addition, enumeration of bacteria in bottom sediment showed that the densities of E. coli and total coliforms in sediment were much higher compared to those in lake water.  相似文献   

2.
The in situ survival and activity of Streptococcus faecalis and Escherichia coli were studied using membrane diffusion chambers in tropical marine waters receiving oil refinery effluents. Protein synthesis, DNA synthesis, respiration or fermentation, INT reduced per cell, and ATP per cell were used to measure physiological activity. Cell densities decreased significantly over time at both sites for both S. faecalis and E. coli; however, no significant differences in survival pattern were observed between S. faecalis and E. coli. Differences in protein synthesis between the two were only observed at a study site which was not heavily oiled. E. coli was more active in protein synthesis and respiration than S. faecalis at both oiled and unoiled sites, and the percentage of the E. coli population that was respiring was significantly higher than S. faecalis fermenting cells at both sites. However, S. faecalis cells were more active in DNA synthesis and higher in ATP content than E. coli cells at both sites. Although fecal streptococci have been suggested as a better indicator of fecal contamination than fecal coliforms in marine waters, in this study both E. coli and S. faecalis survived and remained physiologically active for extended periods of time. These results suggest that the fecal streptococci group is not a better indicator of fecal contamination in tropical marine waters than the fecal coliform group, especially when that environment is high in long-chained hydrocarbons.  相似文献   

3.
A polymerase chain reaction (PCR)-based method was developed to differentiate between pathogenic and nonpathogenic Escherichia coli (E. coli). A pathogenicity marker, linked to the deletion of the ygfB gene, was identified in 80% of the clinical E. coli isolates tested. This marker, combined with the malic acid dehydrogenase gene, formed the duplex PCR that was subsequently used to screen E. coli isolates recovered from two secondary wastewater treatment plants (STPs) and a river site. All waters samples are used to irrigate dairy farm pasture in the West Gippsland region of Victoria, Australia. Results from three consecutive months of sampling (December 2001 and January and February 2002) indicated that Longwarry STP showed 8, 8, and 0% pathogenic E. coli; Pakenham STP showed 0, 12.5, and 33%; and the Bunyip river site showed 20, 12, and 25% respectively.  相似文献   

4.
应用基因工程菌Escherichia coli JM109与厌氧管式膜生物反应器结合,处理模拟染料废水。利用膜截留防止Escherichia coli JM109流失,厌氧膜生物反应器中Escherichia coli JM109可以达到20 g/L左右。在高菌体浓度下,测定了管式膜截留高浓度基因工程菌的临界通量,描述了在低于和高于临界通量条件下透膜压力(TMP)变化情况。考察了错流速度对膜污染的影响。分析了基因工程菌的胞外聚合物(EPS)代谢特性,试验结果为特殊菌与膜过程结合提供了膜污染控制的借鉴。  相似文献   

5.
Escherichia coli (E. coli) and Bacillus megaterium bacteria were frozen at -15 degrees C using a freezer and a spray freezing method. The frozen Bacillus spores were also exposed to UV and free chlorine. An average of 4.7-log inactivation was obtained from the spray ice with 2-day storage time, while the freezer freezing only caused 0.84-log reduction with the same storage time. Significantly higher inactivation levels were observed for the E. coli cells with 2-day storage compared with those without storage. The spray freezing was found more effective in killing the E. coli cells, while more cells were sublethally injured by the freezer freezing. Freezing did not kill the Bacillus megaterium spores, but affected their response to UV and chlorine. Greater inactivation levels were observed at higher free chlorine doses or longer contact time, and the UV fluence-response curve showed initial rapid kill followed by tailing for the frozen spores.  相似文献   

6.
This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance.  相似文献   

7.
Escherichia coli (E. coli), enterococci, and fecal coliform data were collected and compared as potential indicators for swimmablility assessment of a brackish waterbody (Lake Pontchartrain, Louisiana). These indicators were measured during lake background conditions, in stormwater runoff (before dilution with lake water), and in the outfall plume within the lake following storm events. Microbial indicator titers associated with suspended particles and lake-bottom sediments were also investigated. Overall reduction rate constants for fecal coliform, E. coli, and enterococci in lake water and sediment were measured and reported. Attachment of microbial indicators to suspended matter and subsequent sedimentation appeared to be a significant fate mechanism. A slower reduction rate of indicator organisms in sediment further suggested that bottom sediment may act as a reservoir for prolonging indicator organism survival and added concern of recontamination of overlaying waters due to potential solids resuspension. Results indicated that enterococci might be a more stable indicator than E. coli and fecal coliform and, consequently, a more conservative indicator under brackish water conditions.  相似文献   

8.
Biosolids produced from pulp and paper mill wastewater treatment have excellent properties as soil conditioners, but often contain high levels of Escherichia coli. E. coli are commonly used as indicators of fecal contamination and health hazard; therefore, their presence in biosolids causes concern and has lead to restrictions in land-spreading. The objectives of this study were to determine the following: (1) if E. coli from the biosolids of a wastewater-free pulp and paper mill were enteric pathogens, and (2) if other waterborne microbial pathogens were present. E. coli were screened for heat-labile and heat-stable enterotoxin and verocytotoxin virulence genes using a polymerase chain reaction. Ten isolates were also screened for invasion-associated locus and invasion plasmid antigen H genes. None of the 120 isolates carried these genes. Tests for seven other microbial pathogens were negative. Effluents and biosolids from this mill do not contain common microbial pathogens and are unlikely to pose a health hazard.  相似文献   

9.
Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.  相似文献   

10.
The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.  相似文献   

11.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

12.
The effects of wastewater treatment on the proportion of Escherichia coli and Enterococcus sp. resistant to specific antibiotics were investigated at two facilities in Davis County, Utah, one of which received hospital waste. Samples were taken from the influent, effluent before disinfection, and secondary anaerobic sludge digester effluent. There was very little difference in antibiotic resistance among E. coli in the inflow waters of the plants but the plant receiving hospital waste had a significantly higher proportion of antibiotic resistant Enterococcus. The effect of wastewater treatment on antibiotic resistance was more pronounced on enterococci than E. coli. Although some increases in antibiotic resistance were observed, the general trend seemed to be a decrease in resistance, especially in the proportion of multidrug resistant Enterococcus sp.  相似文献   

13.
Livestock manure is suitable for use as a composting material. However, various intestinal microbes, such as Escherichia coli, are significant components of such manures. Thus, it is desirable that the level of intestinal microbes, and particularly opportunistic pathogens, in compost is inspected and counted regularly. The sensitivity and specificity of detection of E. coli in compost have been improved by selective cultivation followed by colony polymerase chain reaction (PCR) using the ECO primer. Indeed, the sensitivity of this method is higher than that of DNA extraction from compost and PCR. In this study, changes in numbers of E. coli present in a field-scale composting process over time was assessed using selective cultivation and colony PCR. Numbers of ECO-positive colonies after 24 h decreased, with a concomitant rise in compost temperature. ECO-positive colonies were not detected from 33 to 48 h. However, ECO-positive colony numbers increased beginning on day 4 and continuing until day 42. Thus, it seems likely that the high temperatures reached during the composting process did not affect E. coli numbers in the final compost. Additionally, selective cultivation followed by colony PCR using specific primers is an appropriate method of determining levels of cultivable pathogens in composted materials.  相似文献   

14.
以表达Staphylococcus aureus ATCC6538镍钴转运酶NiCoT基因的基因工程菌E.coli BL21-NiCoT作为生物吸附剂处理含镍废水.结果表明:基因工程菌在pH为4~9时有比较好的吸附效果,30 min就达到了吸附平衡;基因工程菌对Ni2 的富集容量比原始宿主菌有很大的提高,最大平衡富集量从3.76 mg/g增加到11.33 mg/g,增幅达3倍多,溶液中Ni2 的最大去除率也从原来的35.62%增加到91.23%;Cu2 、Cr6 、Zn2 等的存在对吸附没有很大的影响.镍进入细胞内后与羟基和酰胺基团发生结合,蛋白类物质和含羟基类物质在细胞内富集镍的过程中起到重要作用;基因工程菌转接10、20、30、40、50次,重组质粒保持良好的结构稳定性,基因工程菌对镍的富集能力也具有较好的稳定性.  相似文献   

15.
We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al(2)(SO(4))(3)) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min.  相似文献   

16.
Occurrence and behavior of fluoroquinolone antibacterial agents (FQs) were investigated in hospital wastewaters in Hanoi, Vietnam. Hospital wastewater in Hanoi is usually not treated and this untreated wastewater is directly discharged into one of the wastewater channels of the city and eventually reaches the ambient aquatic environment. The concentrations of the FQs, ciprofloxacin (CIP) and norfloxacin (NOR) in six hospital wastewaters ranged from 1.1 to 44 and from 0.9 to 17 micrgl(-1), respectively. Total FQ loads to the city sewage system varied from 0.3 to 14 g d(-1). Additionally, the mass flows of CIP and NOR were investigated in the aqueous compartment in a small wastewater treatment facility of one hospital. The results showed that the FQ removal from the wastewater stream was between 80 and 85%, probably due to sorption on sewage sludge. Simultaneously, the numbers of Escherichia coli (E. coli) were measured and their resistance against CIP and NOR was evaluated by determining the minimum inhibitory concentration. Biological treatment lead to a 100-fold reduction in the number of E. coli but still more than a thousand E. coli colonies per 100ml of wastewater effluent reached the receiving water. The highest resistance was found in E. coli strains of raw wastewater and the lowest in isolates of treated wastewater effluent. Thus, wastewater treatment is an efficient barrier to decrease the residual FQ levels and the number of resistant bacteria entering ambient waters. Due to the lack of municipal wastewater treatment plants, the onsite treatment of hospital wastewater before discharging into municipal sewers should be considered as a viable option and consequently implemented.  相似文献   

17.
Responses of circulating hemocytes were studied in Lymnaea stagnalis exposed to 10, 30, 90, and 270 microg/L fomesafen for 24 and 504 h. Flow cytometry was used to quantify fomesafen-induced production of reactive oxygen species (ROS), phagocytic activity on Escherichia coli, and oxidative burst when hemocytes were challenged by E. coli or phorbol 12-myristate-13-acetate (PMA). Lysosomal membrane damage was assessed, using the neutral-red retention time (NRRT) assay. Exposure to fomesafen for 24 h resulted in increase in ROS levels and decreases in phagocytosis and the oxidative burst in PMA-stimulated hemocytes. After 504 h, intracellular levels of ROS returned to normal, but phagocytosis of E. coli was still inhibited and the associated oxidative burst significantly reduced. After both durations of exposure, decreases of NRRT indicated that lysosome membrane fragility increased with fomesafen concentration. Potential implications for the health and survival of the snails and consequences on populations are discussed.  相似文献   

18.
A sand column leaching system with well-controlled suction and flow rate was built to investigate the effects on bacterial transport of air-water interface effects (AWI) correlated to water content, particle size, and column length. Adsorption of Escherichia coli strain D to silica sands was measured in batch tests. The average % adsorption for coarse and fine sands was 45.9+/-7.8% and 96.9+/-3.2%, respectively. However, results from static batch adsorption experiments have limited applicability to dynamic bacterial transport in columns. The early breakthrough of E. coli relative to bromide was clear for all columns, namely c. 0.15 to 0.3 pore volume earlier. Column length had no significant effects on the E. coli peak concentration or on total recovery in leachate, indicating retention in the top layer of sands. Tailing of breakthrough curves was more prominent for all fine sand columns than their coarse sand counterparts. Bacterial recovery in leachate from coarse and saturated sand columns was significantly higher than from fine and unsaturated columns. Observed data were fitted by the convection-dispersion model, amended for one-site and two-site adsorption to particles, and for air-water interface (AWI) adsorption. Among all models, the two-site+AWI model achieved consistently high model efficiency for all experiments. Thus it is evident from experimental and modeling results that AWI adsorption plays an important role in E. coli transport in sand columns.  相似文献   

19.
Disinfection of wastewater solids (waste activated solids [WAS]) by interstitial vapor generation was investigated. In addition to the magnitude of disinfection, the amount of water removed and cost relative to traditional residuals disinfection processes was also examined. The process of interstitial vapor generation occurs as a result of the rapid heating of liquid in the interstices of the solid-liquid array. Intense heating causes boiling of the slurry liquid, resulting in an expanding vapor front that simultaneously dewaters the wastewater solids and contributes to the destruction of viable pathogenic microorganisms. Objectives of the study were threefold: (1) to validate disinfection of WAS using the interstitial vapor technique; (2) establish the degree of possible drying of the residuals using the techniques; and (3) establish the key operating variables for the process. Results showed a significant reduction in the most probable number of total coliforms and Escherichia coli (E. coli). Specifically, greater than four-log unit reductions were produced for both total coliform and E. coli bacteria. In addition to quantifying the reduction in bacteria, the percent solids were increased from an initial amount of 7.6% (mass basis) to a final solids content greater than 90% using optimal processing conditions. Cost comparisons were also conducted and shown to be quite favorable when compared with traditional disinfection methods such as lime addition. Because of the high level of E. coli reduction achieved, the process of interstitial vapor generation is shown to be capable of converting a class B biosolids into a class A pathogen reduced product. For example, an initial most probable number (MPN) of 1.2 x 10(6) E. coli bacteria were reduced to 19 at the extreme conditions of the process, well below the requirement of an MPN of 1000 for fecal coliform bacteria. Given its ability to disinfect and dewater wastewater solids, the interstitial vapor generation process was found to be a robust and beneficial technique to produce an environmental and publicly acceptable recyclable biosolids resource.  相似文献   

20.
Cyanide is a major environmental pollutant of the chemical and metallurgical industries. Although extremely toxic, cyanide can enzymatically be converted to the less toxic thiocyanate by rhodaneses (thiosulfate:cyanide sulfurtransferases, EC 2.8.1.1). We engineered a genetic system to express high levels of recombinant Pseudomonas aeruginosa rhodanese (r-RhdA) in Escherichia coli, and used this organism to test the role of r-RhdA in cyanide detoxification. Inducible expression of the rhdA gene under the control of the hybrid T7-lacO promoter yielded active r-RhdA over a 4-h period, though r-RhdA-expressing E. coli showed decreased viability starting from 1 h post-induction. At this time, Western blot analysis and enzymatic assay showed r-RhdA partition between the cytoplasm (95%) and the periplasm (5%). The accessibility of thiosulfate to r-RhdA was a limiting step for the sulfur transfer reaction in the cellular system, but cyanide conversion to thiocyanate could be increased upon permeabilization of the bacterial membrane. Specific r-RhdA activity was higher in the whole-cell assay than in the in vitro assay with pure enzyme (2154 vs. 816 micromol min-1 mg-1 r-RhdA, respectively), likely reflecting enzyme stability. The r-RhdA-dependent cyanide detoxification resulted in increased resistance of r-RhdA overexpressing E. coli to 5 mM cyanide. Bacterial survival was paralleled by release of thiocyanate into the medium. Our results indicate that cyanide detoxification by engineered E. coli cells is feasible under laboratory conditions, and suggest that microbial rhodaneses may contribute to cyanide transformation in natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号