首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental Science and Pollution Research - In this research, a biodegradable starch/Fe3O4/TiO2 bio-nanocomposites (SFT) were produced using different nano Fe3O4/TiO2 (FT) (3, 5, and 10 (wt% dry...  相似文献   

2.
In this work a novel heterogeneous Fenton system based on Fe(0)/Fe3O4 composites is described. The composites with several Fe(0)/Fe3O4 ratios were prepared by two different methods, i.e. mechanical alloying of Fe(0) and Fe3O4 powders and controlled reduction of Fe3O4 with H2. Reaction studies and detailed Conversion Electron M?ssbauer surface characterization of the composites Fe(0)/Fe3O4, Fe(0), Fe3O4, alpha-Fe2O3 and gamma-Fe2O3 suggested that Fe2+surf species are essential to produce an active Fenton system. Kinetic studies for the oxidation of the dye methylene blue, used as an organic model molecule, and for the peroxide decomposition suggest that the reactions proceed via HO* radicals generated from Fe2+surf species and H2O2 in a Fenton like mechanism. The increase in activity caused by the addition of Fe(0) is discussed in terms of a creation of Fe2+surf species during the preparation of the composite and by an electron transfer mechanism from Fe(0) to Fe3+surf during the Fenton reaction to regenerate the Fe2+surf active species.  相似文献   

3.
In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal.  相似文献   

4.
The photodegradation of monuron (3-(4-chlorophenyl)-1,1-dimethylurea) in aqueous solutions under simulated solar irradiation has been conducted by different advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(2+), UV/H(2)O(2)/TiO(2), UV/TiO(2), dark H(2)O(2)/Fe(3+)). The degradation rates were always higher for the homogeneous catalysis in photo-Fenton reactions (UV/H(2)O(2)/Fe(2+)) compared to the heterogeneous photocatalytic systems (TiO(2)/UV and UV/H(2)O(2)/TiO(2)). Optimal concentrations of Fe(2+) and H(2)O(2) for the abatement of the herbicide in the photo-Fenton system were found to be 1 mM Fe(II) and 10 mM H(2)O(2). Several intermediary products were identified using large volume injection micro-liquid chromatography with UV detection (mu-LC-UV), mu-LC-MS and GC-MS techniques and a degradation mechanism has been proposed.  相似文献   

5.
Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI.  相似文献   

6.
We describe the use of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) species in aqueous medium. The composites were prepared by simple mechanical alloying of metallic iron and magnetite in different proportions, i.e. Fe(0) 25, 50, 75 and 90wt%. While after 3h of reaction pure Fe(0) and pure Fe3O4 showed only a low reduction efficiency of 15% and 25% Cr(VI) conversion, respectively, the composites, in particular Fe(0)(25wt%)/Fe3O4, showed a remarkable activity with ca. 65% Cr(VI) conversion. Kinetic experiments showed a high reaction rate during the first 3h, which subsequently decreased strongly, probably due to a pH increase from 6 to 8. Experiments with composites based on Fe(0)/alpha-Fe2O3, Fe(0)/gamma-Fe2O3 and Fe(0)/FeOOH showed very low activities, suggesting that Fe(oct)2+ in the magnetite structure plays an important role in the reaction. Scanning and high resolution electron microscopies and M?ssbauer spectra (transmission and conversion electron M?ssbauer spectroscopy) indicated that the mechanical alloying process promotes a strong interaction and interface between the metallic and oxide phases, with the Fe(0) particles completely covered by Fe3O4 particles. The high efficiency of the composite Fe(0)/Fe3O4 for Cr(VI) reduction is discussed in terms of a special mechanism where an electron is transferred from Fe(0) to magnetite to reduce Fe(oct)3+ to Fe(oct)2+, which is active for Cr(VI) reduction.  相似文献   

7.
This paper concerns the incineration of isopropyl alcohol (IPA) using the ferrospinel catalyst MnFe2O4. It covers the preparation of the ferrospinel catalyst, the screening of catalytic activity, catalytic incineration testing, and 72-hr decay testing of the catalyst. The experimental results of catalyst screening reveal that the Mn/Fe catalyst is the best of five prepared catalysts (chromium/iron [Cr/Fe], manganese/iron [Mn/Fe], zinc/iron [Zn/Fe], nickel/iron [Ni/Fe], and pure magnetite [Fe3O4]). In tests of the catalytic incineration system used to convert IPA, 98% conversion was obtained at a space velocity of 24,000 hr(-1), an oxygen (O2) content of 21%, 1700 ppm of IPA, and a reaction temperature of 200 degrees C.  相似文献   

8.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1213-1223
The objective of the laboratory study is to examine the conditions under which transition metal ions (e.g., ferrous ion, Fe2+) could activate the persulfate anion (S2O8(2)-) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a standard redox potential of 2.6 V. The SO4-* is capable of destroying groundwater contaminants in situ such as trichloroethylene (TCE). Experiments using Fe2+ as an activator under various molar ratios of S2O8(2)-/Fe2+/TCE in an aqueous system indicated that partial TCE degradation occurred almost instantaneously and then the reaction stalled. Either destruction of SO4-* in the presence of excess Fe2+ or the rapid conversion of all Fe2+ to Fe3+ limited the ultimate oxidizing capability of the system. Sequential addition of Fe2+ in small increments resulted in an increased TCE removal efficiency. Therefore, it appeared that Fe2+ played an important role in generating SO4-*. An observation of oxidation-reduction potential (ORP) variations revealed that the addition of sodium thiosulfate (Na2S2O3) to the ferrous ion activated persulfate system could significantly decrease the strong oxidizing conditions. It was hypothesized that the thiosulfate induced reducing conditions might convert Fe3+ to a lower valence state of Fe2+, making the Fe2+ available to activate persulfate decomposition. The sequential addition of thiosulfate (S2O3(2)-), after the initial stalling of ferrous ion activated persulfate oxidation of TCE, resulted in an improvement in TCE removal. The ferrous ion activated persulfate-thiosulfate redox couple resulted in fairly complete TCE degradation in aqueous systems in a short time frame. In soil slurry systems, TCE degradation was slower in comparison to aqueous systems.  相似文献   

9.
A comparative study is made of 12 methods of chemical oxidation applied to degrading p-hydroxybenzoic acid in aqueous solution. The oxidation processes tested were: UV, O3, UV/TiO2, O3/Fe2+, O3/H2O2, O3/UV, UV/H2O2, H2O2/Fe2+, H2O2/Fe2+/O3, UV/H2O2/O3, H2O2/Fe2+/UV and O3/UV/H2O2/Fe2+. The 12 processes were ranked by reactivity. In a kinetic study, the overall kinetic rate constant was split up into three components: direct oxidation by UV irradiation (photolysis), direct oxidation by ozone (ozonation), and oxidation by free radicals (mainly OH*).  相似文献   

10.
The issue of investigations in this study was an application of heterogeneous Fenton-type catalyst, Fe-exchanged zeolite FeZSM5, for the minimization of phenol and overall organic content in the model wastewater. Applied treatment systems included variation of heterogeneous and homogeneous Fenton-type catalyst with and without the assistance of UV irradiation, FeZSM5/H2O2, Fe2+/H2O2/NH4ZSM5, Fe3+/H2O2/NH4ZSM5, UV/FeZSM5/H2O2, UV/Fe2+/H2O2/NH4ZSM5 and UV/Fe3+/H2O2/NH4ZSM5. Processes efficiency was evaluated on the basis of phenol removal, mineralization extent, H2O2 consumption and concentration of iron ions in the bulk after the treatment. By all applied systems, complete phenol removal was achieved in less than 30 min of treatment time. Systems including heterogeneous Fenton-type catalyst showed somewhat lower mineralization efficiency in comparison to the corresponding systems applying homogeneous Fenton-type catalysts and the addition of synthetic zeolite NH4ZSM5. Significantly lower concentration of iron ions in the bulk after the treatment could give these systems, particularly UV/FeZSM5/H2O2, a great advantage over the homogeneous Fenton-type systems.  相似文献   

11.
Sharma VK 《Chemosphere》2008,73(9):1379-1386
Several pharmaceuticals have been detected globally in surface water and drinking water, which indicate their insufficient removal from water and wastewater using conventional treatment methods. This paper reviews the kinetics of oxidative transformations of pharmaceuticals (antibiotics, lipid regulators, antipyretics, anticonvulsants, and beta-blockers) by Cl(2), ClO(2), O(3), and ferrate(VI) (Fe(VI)O(4)(2-),Fe(VI)) under treatment conditions. In the chlorination of sulfonamide antibiotics, HOCl is the major reactive Cl(2) species whereas in the oxidation by Fe(VI), HFeO(4)(-) is the dominant reactive species. Both oxidation processes can oxidize sulfonamides in seconds at a neutral pH (t(1/2)≤ 220 s; 1 mg L(-1) HOCl or K(2)FeO(4)). The reactivity of O(3) with pharmaceuticals is generally higher than that of HOCl (k(app,pH 7) (O(3))=1-10(7)M(-1)s(-1); k(app,pH 7) (HOCl)=10(-2)-10(5)M(-1)s(-1)). Ozone selectively oxidizes pharmaceuticals and reacts mainly with activated aromatic systems and non-protonated amines. Oxidative transformation of most pharmaceuticals by O(3) occurs in seconds (t(1/2)≤ 100 s; 1 mg L(-1) O(3)) while half-lives for oxidations by HOCl differ by at least two orders of magnitude. Ozone appears to be efficient in oxidizing pharmaceuticals in aquatic environments. The limited work on Fe(VI) shows that it can also potentially transform pharmaceuticals in treatment processes.  相似文献   

12.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

13.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

14.
Brillas E  Casado J 《Chemosphere》2002,47(3):241-248
The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current.  相似文献   

15.
In this study, advanced oxidation technologies, namely Fenton Process (FP), Fenton-Like Process (FLP), ozonation (O3) and O3/H2O2 processes, were applied to synthetic wastewater containing 3-indolebutyric acid (IBA). The effectiveness of each process was investigated at different pH values, Fe(+2), Fe(+3), O3 and H2O2 concentrations with respect to the removal efficiencies for chemical oxygen demand (COD) and total organic carbon (TOC). The best removal efficiencies were seen at pH 3 and 2 mM Fe concentration in both FP and FLP, in which the optimum H2O2 concentrations were 6 mM for FP and 10 mM for FLP. Optimum process conditions were pH 12 for the O3 process, pH 9 for the O3/H2O2 process and 1:1 O3/H2O2 molar ratio. The highest COD removal efficiency was 86 percent, obtained in the O3/H2O2 process and the highest TOC removal efficiency was obtained at 77 percent in the FP.  相似文献   

16.
采用水相共沉淀法制备小尺寸磁性Fe3O4纳米颗粒,以没食子酸作为还原剂和表面修饰剂,还原Ag[(NH3)2]’制备出Fe3O4/Ag磁性纳米颗粒。研究该磁性纳米颗粒对水溶液中铅离子的吸附行为,研究结果表明,pH为7.0,吸附温度30℃时可得到最好的处理效果,铅的去除率可达99.7%以上,Fe3O4/Ag颗粒吸附行为符合二级动力学模型(R2〉0.99)。该磁性纳米颗粒经过多次再生处理后,仍具有很好的吸附效果,表明Fe3O4/Ag在水处理方面拥有良好的应用前景。  相似文献   

17.
Qian Y  Zheng M  Liu W  Ma X  Zhang B 《Chemosphere》2005,60(7):951-958
Chlorophenols (ClPhs) are considered as important precursors for PCDD/Fs formation. The influences of series of metal oxides including MgO, Al2O3, CaO, BaO, TiO2, V2O5, MnO2, Fe2O3, Co3O4, CuO, Ag2O, ZnO, HgO, SnO, PbO, La2O3, CeO2, and Eu2O3 on PCDD/Fs formation from pentachlorophenol (PCP) were investigated in a laboratory-scale reactor. The results indicated that most of the above metal oxides have obvious suppressing effects on the total amount of PCDD/Fs formation from precursor PCP except for CuO, ZnO, MnO2, TiO2 and Co3O4 with promotion effects at 280 degrees C for 2 h. Although MgO, Al2O3, Fe2O3, PbO, La2O3 and Eu2O3 could reduce the amount of octachlorinated dibenzo-p-dioxin (OCDD), they promote the formation of more toxic 1,2,3,4,6,7,8-HpCDD at the same time. The total suppressing efficiencies of several metal oxides including CaO, BaO, PbO, Ag2O, HgO and SnO which have lower Z/r (charge to radius ratio) <2 are all over 90%. The theories of generalized acid-base and atomic parameter (Z/r) were used to speculate the effecting mechanisms. The factors including time and temperature on suppressing efficiencies of CaO, BaO and PbO have also been studied in the present paper. The results showed that the total suppressing efficiencies of CaO, BaO and PbO increase with the increase of heated time and temperature.  相似文献   

18.
以某制浆造纸厂生化出水Fenton/絮凝深度处理工艺长期运行数据为依据,系统分析了H2O2、废酸液(FeSO4含量约8%)、硫酸铝、PAM及氧化钙等处理药剂用量与水量、进水负荷和COD去除量之间的关系。结果表明,H2O2、废酸液、硫酸铝、PAM及氧化钙的单位水量平均投加量分别为0.05、2.18、0.07、0.0075和0.27 kg/m3,而去除单位COD的药剂平均消耗量分别为0.20、8.48、0.27、0.029和1.06 kg/(kg COD);H2O2、废酸液、硫酸铝和氧化钙的用量随进水负荷的增大而增加,而PAM随进水负荷的变化较小。H2O2和FeSO4的投加摩尔比(MH2O2/Fe2+)主要集中在1.0-2.0之间,其中在1.0-1.6之间的累积频率达到93%。该工艺的出水COD和SS分别为65-100 mg/L和20-30 mg/L,达到《制浆造纸工业水污染物排放标准》(GB 3544-2008)排放要求。废水深度处理成本约为1.01元/m3,其中药剂费用约0.58元/m3,占56.98%。  相似文献   

19.
研究以纳米TiO2为载体,浸渍负载过渡金属氧化物,以CO为还原剂的脱硝催化剂的脱硝性能。实验中以计算量的Ni(NO3)2和Fe(NO3)3混合溶液浸渍纳米TiO2粉末,室温下搅拌30 min至混合均匀,放入旋转蒸发器中,70℃下至水分蒸干为止;所得粉末在550℃下、空气气氛中焙烧4 h即得所需催化剂。用以上方法分别制备2%Fe2O3-10%Cr2O3/TiO2、4%Fe2O3-8%Cr2O3/TiO2、6%Fe2O3-6%Cr2O3/TiO2、8%Fe2O3-4%Cr2O3/TiO2与10%Fe2O3-2%Cr2O3/TiO2等5种催化剂样品。实验结果表明,制备的催化剂具有较好的结构,分散较为均匀。对于CO+NO反应,Fe2O3-Cr2O3/TiO2系列催化剂具有较好的催化活性,NO的转化率都达到了100%。其中,10%Fe2O3-2%Cr2O3/TiO2样品具有最好的低温活性,H2-TPR结果表明,这是由于10%Fe2O3-2%Cr2O3/TiO2催化剂更易于被CO预还原。  相似文献   

20.
Lee C  Yoon J 《Chemosphere》2004,56(10):923-934
The thermal enhancement of the formation of *OH by the hv/Fe(III)/H2O2 system (including the Fe(III)/H2O2 system) was quantitatively investigated with reaction temperatures ranging from 25 to 50 degrees C. A temperature dependent kinetic model for the hv/Fe(III)/H2O2 system, incorporating 12 major reactions with no fitted rate constants or activation energies, was developed, and successfully explained the experimental measurements. Particularly, the thermal enhancement of Fe(OH)2+ photolysis which is the most significant step in the hv/Fe(III)/H2O2 system was effectively explained by two factors; (1) the variation of the Fe(OH)2+ concentration with temperature, and (2) the temperature dependence of the quantum yield for Fe(OH)2+ photolysis (measured activation energy=11.4 kJ mol(-1)). Although in both the hv/Fe(III)/H2O2 and Fe(III)/H2O2 systems, elevated temperatures enhanced the formation of *OH, the thermal enhancement was much higher in the dark Fe(III)/H2O2 system than the hv/Fe(III)/H2O2 system. Furthermore, it was found that the relative thermal enhancement of the formation of *OH in the presence of *OH scavengers (tert-butyl alcohol) was magnified in the Fe(III)/H2O2 system but was not in the hv/Fe(III)/H2O2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号