首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

2.
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants.  相似文献   

3.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

4.
Yang Z  Zhu L 《Chemosphere》2007,67(2):402-409
Accurate modeling of the uptake and accumulation behavior of organic contaminants like polycyclic aromatic hydrocarbons (PAHs) in plants is essential to assess crop contamination and subsequent human exposure. In this study, the performance of a partition-limited model on predicting ryegrass uptake of PAHs (acenaphthene, fluorene, phenanthrene and pyrene) from water was evaluated and the major factors were examined. It was found that model predictions of PAH concentrations in roots and shoots of ryegrass were all within an order of magnitude of the observed values with the differences between estimated and measured concentrations less than 42.1% for roots and 78.4% for shoots. Since the model considered soil/water-plant pathway only, it was inevitable that simulated concentrations in shoots suffered a bigger error than those in roots due to the influence of foliar uptake, the other important pathway for PAHs. If the impact of foliar uptake was excluded, the accuracy of simulated shoot concentrations would be greatly enhanced, with the maximum prediction error reduced from 78.4% to 47.1% for pyrene. Other factors aside from foliar uptake were also examined, including aqueous PAH concentrations, uptake time, plant composition and chemical properties. These factors were found to influence the model performance generally through acting on the quasi-equilibrium factor (alpha(pt)). Results from this study substantiated the utility of this partition-limited model for vegetation-uptake assessment, and then provided some testimony valuable for the modification of a model with a better performance.  相似文献   

5.
Effect of rhamnolipids on the uptake of PAHs by ryegrass   总被引:7,自引:0,他引:7  
A hydroponic experiment was conducted to investigate the effect of rhamnolipids, a biosurfactant, on the uptake of polycyclic aromatic hydrocarbons (PAHs) by ryegrass. Results showed that rhamnolipids could enhance the uptake of PAHs by ryegrass roots. With increasing concentration of rhamnolipids, the PAH content in ryegrass roots initially increased and then decreased, while the PAH content in ryegrass shoots did not change. Batch studies also showed that the sorption of phenanthrene by fresh ryegrass roots was dependent on rhamnolipid concentration and showed the same trends as the uptake experiment. The increase of permeability of ryegrass root cells with the increase of rhamnolipid concentration may lead to the initial enhancement of PAH content in ryegrass roots, and the decrease of PAH adsorption onto the root surface with further increase of rhamnolipids led to the decrease of PAH content in ryegrass roots.  相似文献   

6.
Aina R  Palin L  Citterio S 《Chemosphere》2006,65(4):666-673
Polycyclic aromatic hydrocarbons (PAHs) are among the most dangerous environmental contaminants due to their toxic, carcinogenic and mutagenic effects. Although there are many data in literature that detail the effects of PAHs on animals, little is known about their action on higher plants which are often used as bioindicators. The aim of the present study was to evaluate the genotoxicity of two different PAHs, benzo[a]pyrene (BaP) and naphthalene (Naph), on Trifolium repens L. Clover plants were exposed to soil which had been artificially contaminated with three concentrations of BaP (5, 10 and 20 microg g-1) or Naph (25, 50 and 100 microg g-1). After 15 days, changes in the DNA content and sequence of roots and shoots were evaluated by flow cytometry (FCM) and amplified fragment length polymorphism (AFLP). Root and shoot dry weight were also determined to assess plant growth. Results showed that BaP and Naph were both genotoxic for white clover, inducing significant changes in root and shoot DNA sequence. Damage was more severe in the root than in the shoot suggesting that the translocation of these compounds and their genotoxic metabolites was limited. Ploidy alterations were not detected and the extent of damage caused by all the tested PAH concentrations was not sufficient to affect plant development.  相似文献   

7.
Gao Y  Shen Q  Ling W  Ren L 《Chemosphere》2008,72(4):636-643
A greenhouse study examined plant uptake of phenanthrene and pyrene, as representatives of polycyclic aromatic hydrocarbons (PAHs), from an aqueous solution containing a nonionic surfactant Tween 80. The uptake was conducted with 1.0 mg l(-1) phenanthrene and 0.12 mg l(-1) pyrene under a wide range of Tween 80 concentrations (0-105.6 mg l(-1)). Tween 80 at the test concentrations did not show any apparent phytotoxity toward the growth of red clover (Trifolium pretense L.). At concentrations generally lower than 13.2 mg l(-1), Tween 80 enhanced the plant uptake based on the concentrations and PCFs (plant concentration factors) of these two PAHs. When present at higher concentrations, Tween 80 inhibited the uptake of both PAH compounds by the tested plant. The maximal plant uptake was observed at 6.6 mg l(-1) Tween 80, in which PAH concentrations and PCFs were 18-115% higher than those in Tween 80-free controls. The total mass removal (off-take) of phenanthrene and pyrene by root or shoot increased initially and decreased thereafter with the increase in Tween 80 concentrations. Although shoot biomass was evidently larger than root, the off-take was much higher in root than shoot because of the larger root concentrations of these chemicals. Results from this study show promises for the potential efficacy of enhanced phytoremediation in PAH contaminated sites using surfactant amendment.  相似文献   

8.
Li Y  Yediler A  Ou Z  Conrad I  Kettrup A 《Chemosphere》2001,45(1):67-75
Effects of a non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm were studied using 14C-labeled phenanthrene. The mineralization and metabolism of phenanthrene were fast in such a system. At least 90% of the applied phenanthrene were transformed within 24 days. Only 0.3% of the applied 14C-activity were identified to be the parent phenanthrene. Most of the applied 14C-activity (70%) was recovered from wheat, in which ca. 70% were associated with wheat shoots (stems and leaves) and ca. 30% wheat roots. 33% and 20% of the applied 14C-activity had been constructed into wheat tissues of shoots and roots, respectively. The 14C-activity recovered in forms of CO2 and volatile organic chemicals (VOCs) was 12-16% and 4-5%, respectively. The major metabolites of phenanthrene were polar compounds (18% of the applied 14C) and only 2.1% were identified as non-polar metabolites. No phenanthrene was found in wheat shoots indicating that it could not be transported from roots to upper parts of the plant but in form of metabolites (mostly polar metabolites). Foliar uptake of 14C-activity via air in form of 14CO2 occurred. The presence of Tween-80 significantly enhanced the degradation of phenanthrene, which could be attributed to its increase of microbial activities in the system. Tween-80 also significantly (P < 0.05) reduced the phenanthrene level in wheat roots, which probably resulted from desorption of phenanthrene from root surface caused by the surfactant.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

10.
Prediction of phenanthrene uptake by plants with a partition-limited model   总被引:12,自引:0,他引:12  
The performance of a partition-limited model on prediction of phenanthrene uptake by a wide variety of plant species was evaluated using a greenhouse study. The model predictions of root or shoot concentrations for tested plant species were all within an order of magnitude of the observed values. Modeled root concentrations appeared to be more accurate than modeled shoot concentrations. The differences of simulated and experimented concentrations of phenanthrene in roots and shoots of three representative plant species, including ryegrass, flowering Chinese cabbage, and three-colored amaranth, were less than 81% for roots and 103% for shoots. Results are promising in that the alpha(pt) values of the partition-limited model for root uptake of phenanthrene correlate well with root lipid contents. Additionally, a significantly positive correlation is also observed between root concentration factors (RCFs, defined as the ratio of contaminant concentrations in root and in soil on a dry weight basis) of phenanthrene and root lipid contents. Results from this study suggest that the partition-limited model may have potential applications for predicting the plant PAH concentration in contaminated sites.  相似文献   

11.
Biomass burning smoke constituents are worthy of concern due to its influence on climate and human health. The organic constituents and distributions of molecular tracers emitted from burning smoke of six natural vegetations including monsoon evergreen broad-leaf trees and shrubs in South China were determined in this study. The gas and particle samples were collected and analyzed by gas chromatography–mass spectrometry. The major organic components in these smoke samples are methoxyphenols from lignin and saccharides from cellulose. Polycyclic aromatic hydrocarbons (PAHs) are also present as minor constituents. Furanose, pyranose and their dianhydrides are the first reported in the biomass burning smoke. Some unique biomarkers were detected in this study which may be useful as specific tracers. The corresponding tracer/OC ratios are used as indicators for the two types of biomass burning. U/R (1.06–1.72) in the smoke samples may be used as parameters to distinguish broad-leaf trees and shrubs from fossil fuel. Other useful diagnostic ratios such as methylphenanthrene to phenanthrene (MPhe/Phe), phenanthrene to phenanthrene plus anthracene (Phe/(Phe + Ant)) and fluoranthene to fluoranthene plus pyrene (Flu/(Flu + Pyr)) and octadecenoic acid/OC are also identified in this study. These results are useful in efforts to better understand the emission characterization of biomass burning in South China and the contribution of regional biomass burning to global climate change.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.  相似文献   

13.
Solubilization of naphthalene and phenanthrene into the micelles formed by three different anionic surfactants was investigated for single, binary, and ternary mixtures including pyrene. The three surfactants were sodium dodecylbenzene sulfonate (SDDBS), monoalkylated disulfonated diphenyl oxide (MADS-C12), and dialkylated disulfonated diphenyl oxide (DADS-C12). The order of increasing solubility enhancement of naphthalene and phenanthrene was SDDBS < MADS-C12 < < DADS-C12, which indicates that the hydrophobic chains in micellar core play more important role for the solubilization of polycyclic aromatic hydrocarbons (PAHs) than the benzene rings in palisade layer of a micelle. The solubility enhancement of naphthalene was slightly changed in PAH mixtures. The solubility of phenanthrene was greatly enhanced in presence of naphthalene but reduced in presence of pyrene. The explanation for these results could be that less hydrophobic compounds can be solubilized at the interfacial region of a hydrophobic core, which reduces the interfacial tension between the core and water, and then the reduced interfacial tension can support a larger core volume for the same interfacial energy.  相似文献   

14.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

15.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

16.
The response of maize (Zea mays L.) to inorganic arsenic exposure was studied, at the seedling stage under hydroponic conditions, preliminarily in sixteen lines (fourteen hybrids and two inbred lines) and then, more deeply, in six of these lines, selected by showing contrasting differences in their sensitivity to the metalloid. The results indicated that (i) maize is rather tolerant to arsenic toxicity, (ii) arsenite is more phytotoxic than arsenate, (iii) roots are less sensitive than shoots to the metalloid, (iv) a great accumulation of non-protein thiols (probably phytochelatins), without substantial effect on the glutathione content, is produced in roots but not in shoots of arsenic-exposed plants and (v) maize is able to accumulate high levels of arsenic in roots with very low translocation to shoots. The study, thus, suggests that maize, for its very low rate of acropetal transport of arsenic from roots to shoots, may be a safe crop in relation to the risk of entry of metalloid in the food chain and, for being an important bioenergy crop capable of expressing high levels of arsenic tolerance and accumulation in roots, may represent an interesting opportunity for the exploitation of agricultural useless arsenic contaminated lands.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.  相似文献   

18.
Fritioff A  Greger M 《Chemosphere》2007,67(2):365-375
Elodea canadensis is a submersed macrophytes, widely distributed in stormwater treatment ponds and able to remove heavy metals from water. This study examines the Cd uptake, translocation, and efflux patterns in Elodea. Several experiments were set up in a climate chamber. To study the root and shoot Cd uptake, living and dead roots and shoots were treated with (109)Cd in one- and two-compartment systems. Furthermore, to examine Cd translocation and distribution, either roots or shoots were treated with (109)Cd. Finally, the efflux of Cd from roots and shoots, respectively, to the external solution was studied after loading whole plants with (109)Cd. Results from the two compartment studies show that Cd is accumulated via direct uptake by both roots and shoots of Elodea. The Cd accumulation proved not to be metabolically dependent in Elodea, and the apoplastic uptake in particular was decreased by Cd pretreatment. In one week, up to 23% of the root uptake was translocated to the shoots, while about 2% of the Cd accumulated by shoots was translocated to the roots. Thus, slight dispersion of Cd is possible, while metal immobilization will not be directly mediated via the Elodea plant. The efflux experiment proved that both shoots of dead plants and roots of living plants had a faster efflux than did shoots of living plants. This information is relevant for an understanding of the fate of Cd in stormwater treatment ponds with Elodea.  相似文献   

19.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) and dioxins are lipophilic organic pollutants occurring widely in the terrestrial environment. In order to study the PAHs and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) transfer in the food chain, pigs have been fed with milk mixed either with 14C-phenanthrene, with 14C-benzo[a]pyrene or with 14C-TCDD. The analysis of portal and arterial blood radioactivity showed that both PAHs and TCDD were absorbed with a maximum concentration at 4-6 h after milk ingestion. Then, the blood radioactivity decreased to reach background levels 24 h after milk ingestion. Furthermore, the portal and arterial blood radioactivities were higher for phenanthrene (even if the injected load was the lowest) than these of benzo[a]pyrene or these of TCDD, in agreement with their lipophilicity and water solubility difference. Main 14C absorption occurred during the 1-3 h time period after ingestion for 14C-phenanthrene and during the 3-6 h time period for 14C-benzo[a]pyrene and for 14C-TCDD. 14C portal absorption rate was high for 14C-phenanthrene (95%), it was close to 33% for 14C-benzo[a]pyrene and very low for 14C-TCDD (9%). These results indicate that the three studied molecules have a quite different behaviour during digestion and absorption. Phenanthrene is greatly absorbed and its absorption occurs via the blood system, whereas benzo[a]pyrene and TCDD are partly and weakly absorbed respectively. However these two molecules are mainly absorbed via the portal vein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号