首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
A series of porous γ-Al2O3 materials was prepared by solution-combustion and ball-milling processes. The as-prepared powders were physicochemically characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 physisorption measurements and their performances in CO2 adsorption at different pressures (0.5 to 1.5 MPa) and temperatures (40 to 60ºC) were investigated. It was found that γ-Al2O3 synthesized by the solution-combustion process and ball milled at 10 hr exhibited the best CO2 adsorption performance at 60ºC and 1.5 MPa, achieving a maximum of 1.94 mmol/g compared to the four studied materials, as a result of their interesting microstructure and surface properties (i.e., nanocrystallinity, specific surface area, narrow pore size distribution, and large total pore volume). Our study shows that the γ-Al2O3 prepared by solution combustion followed by ball milling presents a fairly good potential adsorbent for efficient CO2 capture.

Implications: In this work, γ-Al2O3 materials were successfully obtained by solution combustion and modified via ball milling. These improved materials were systematically investigated as solid adsorbents of accessible surface areas, large pore volumes, and narrow pore size distribution for the CO2 capture. These studied solid adsorbents can provide an additional contribution and effort to develop an efficient CO2 capture method as means of alleviating the serious global warning problem.  相似文献   


3.
Extensive production and application of γ-Fe2O3 magnetic nanoparticles (MNPs) has increased their potential risk on environment and human health. This report illustrates a genetic impact of γ-Fe2O3 magnetic nanoparticles (MNPs) on Escherichia coli (E. coli). After 3000-generation incubation with MNPs addition, obvious genomic variations were revealed by using repetitive extragenic palindromic PCR (rep-PCR) DNA fingerprint technique. The physicochemical interactions between MNPs and bacteria could be responsible for such genomic responses. It was revealed that Fe3+ concentration increased in the medium. Transmission electronic microscopy (TEM) and flow cytometry (FCM) analysis consistently demonstrated the occurrences of adsorption and membranes-internalization of MNPs outside and inside cells. Both increased Fe3+ ion and the uptake of MNPs facilitated Fe binding with proteins and DNA strands, resulting in enhancing the mutation frequency of E. coli. Our results would be of great help to assessing the potential impact of MNPs on human and environment.  相似文献   

4.
Experiments are conducted to determine the effect of a cage of water molecules on the photolysis quantum yields of nitrate, FeOH2+, and H2O2. Results suggest that the quantum yields of nitrate and FeOH2+ are decreased by the recombination of photo-fragments ( OH +  NO2 and Fe2+ +  OH, respectively) before they leave the surrounding cage of water molecules. However, no evidence is found for an enhanced quantum yield for H2O2. Therefore, the photolysis of nitrate and FeOH2+ could be enhanced if the cage of the solvent molecules is incomplete, as is the case at the air–water interface of atmospheric droplets. The photolysis rate constant distribution within nitrate, FeOH2+, and H2O2 aerosols is calculated by combining the expected quantum yield data in the bulk and at the interface with Mie theory calculations of light intensity. The photolysis rate constant of nitrate and FeOH2+ would be significantly higher at the surface than in the bulk if quantum yields are enhanced at the surface. In the case of H2O2, the photolysis rate constant would be enhanced by surface accumulation. The results concerning the expected rates of photolysis of these photoactive species are applied to the assessment of the reaction between benzene and OH in the presence of OH scavengers in an atmospherically relevant scenario. For a droplet of 1 μm radius, a large fraction of the total OH-benzene reaction (15% for H2O2, 20% for nitrate, and 35% for FeOH2+) would occur in the surface layer, which accounts for just 0.15% of the droplet volume.  相似文献   

5.
Rate constants for the gas-phase reactions of the OH radical with 1-methylnaphthalene and of N2O5 with 1- and 2-methylnaphthalene and 2,3-dimethylnaphthalene have been determined at 298 ± 2 K by use of relative rate techniques. The rate constants determined were: for the reaction of OH radicals with 1-methylnaphthalene, (5.30 ± 0.48) × 10−11 cm3 molecule−1 s−1; for the reaction of N2O5 with 1-methylnaphthalene, 2-methylnaphthalene and 2,3-dimethylnaphthalene, (3.3 ± 0.7) × 10−17, (4.2 ± 0.9) × 10−17 and (5.7 ± 1.9) × 10−17 cm3 molecule−1 s−1, respectively. In addition, an upper limit to the rate constant of 1.3 × 10−19 cm3 molecule−1 s−1 was measured for the reaction of O3 with 1-methylnaphthalene at 298 ± 2 K. These data, when combined with data from previous literature, allow the atmospheric gas-phase removal processes of these alkylnaphthalenes to be quantified.  相似文献   

6.
Environmental Science and Pollution Research - γ-Fe2O3/La/Bi2WO6 heterojunction composites have been successfully synthesized by simple and convenient hydrothermal method. The photocatalytic...  相似文献   

7.
The mean monthly distribution of the diurnal maximum O3 and of the SO2 in the eastern two-thirds of the U.S. was determined for the summer (July and August) of 1977–1981. Highest O3 concentrations varied from 60 to 90 ppbv and covered an area of about 2 to 5 × 106 km2; and that for SO2 varied from values greater than 10 ppbv to values about 25 ppbv and covered an area of 0.3–1.3 × 106 km2. The geographical locations of the centers of high O3 concentrations were related to the path of the anticyclones. The centers of high SO2 concentration were affected by the path of anticyclones but to a lesser extent. The SO2 distribution was controlled to a significant extent by the location of major SO2 sources. The data suggested that highpressure systems that become stationary, weaken and dissipate in the eastern two-thirds of the U.S. have a profound effect on the O3 and SO2 distribution.  相似文献   

8.
9.
Wang  Xiaobing  Jin  An  Zhu  Meng  Feng  Chen  He  Hao  Huang  Zhigang  Li  Kaifeng  Wang  Lu 《Environmental science and pollution research international》2023,30(13):36098-36111

The wide use of polyacrylamide (PAM) in enhanced oil recovery generates a large amount of polymer-bearing wastewater featuring high viscosity and difficult viscosity reduction, making the treatment of wastewater increasingly difficult. In this paper, the experimental study on reducing the viscosity of wastewater containing polyacrylamide by using the plasma generated by dielectric barrier discharge (DBD) and the synergistic effect of catalyst γ-Al2O3 is carried out. The law of plasma reducing the viscosity of wastewater containing polyacrylamide is studied under the different conditions of amounts of γ-Al2O3 catalyst, discharge voltages, and initial concentrations of polyacrylamide-containing wastewater. The mechanism of viscosity reduction of polyacrylamide is studied through environmental scanning electron microscope (ESEM), Fourier transform infrared (FTIR) spectrometer, and X-ray photoelectron spectroscopy (XPS). The results show that the catalytic viscosity reduction is the best when the discharge voltage is 18 kV and the discharge time is 15 min. With the increase in the input of the γ-Al2O3 catalyst, the viscosity of the PAM solution decreases gradually. When the amount of γ-Al2O3 is 375 mg, the shear rate changes from 0.5 1/sec to 28 1/sec, and the viscosity of the solution containing polyacrylamide changes from 434.5 mPa·s to 40.2 mPa·s. The viscosity reduction rate of the PAM solution is 90.7%. After the catalytic viscosity reduction, the functional groups of polyacrylamide do not change much. The elemental composition of the catalyst has not changed, which is still Al, C, and O.

  相似文献   

10.
以溶胶凝胶法制备的15%TiO_2/γ-Al_2O_3为载体,通过浸渍法制备12%Fe_2O_3/15%TiO_2/γ-A_l2O_3催化剂,采用XRD和TPR对催化剂结构和性质进行表征,并考察不同焙烧温度、焙烧时间和载体对催化剂脱硫脱硝性能的影响。结果显示,最佳焙烧条件为500℃下焙烧3 h,12%Fe_2O_3/15%TiO_2/γ-Al_2O_3催化剂达到的最高脱硝脱硫率分别为98.2%和95.4%。  相似文献   

11.
研究以纳米TiO2为载体,浸渍负载过渡金属氧化物,以CO为还原剂的脱硝催化剂的脱硝性能。实验中以计算量的Ni(NO3)2和Fe(NO3)3混合溶液浸渍纳米TiO2粉末,室温下搅拌30 min至混合均匀,放入旋转蒸发器中,70℃下至水分蒸干为止;所得粉末在550℃下、空气气氛中焙烧4 h即得所需催化剂。用以上方法分别制备2%Fe2O3-10%Cr2O3/TiO2、4%Fe2O3-8%Cr2O3/TiO2、6%Fe2O3-6%Cr2O3/TiO2、8%Fe2O3-4%Cr2O3/TiO2与10%Fe2O3-2%Cr2O3/TiO2等5种催化剂样品。实验结果表明,制备的催化剂具有较好的结构,分散较为均匀。对于CO+NO反应,Fe2O3-Cr2O3/TiO2系列催化剂具有较好的催化活性,NO的转化率都达到了100%。其中,10%Fe2O3-2%Cr2O3/TiO2样品具有最好的低温活性,H2-TPR结果表明,这是由于10%Fe2O3-2%Cr2O3/TiO2催化剂更易于被CO预还原。  相似文献   

12.

Purpose

Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. The purpose of this work is to synthesize α-Fe2O3 nanofibers for potential applications in removal and recovery of noxious Cr(VI) from wastewater.

Methods

α-Fe2O3 nanofibers were synthesized via a simple hydrothermal route followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. Batch adsorption experiments were conducted, and Fourier transform infrared spectra were recorded before and after adsorption to investigate the Cr(VI) removal performance and adsorption mechanism. Langmuir and Freundlich modes were employed to analyze the adsorption behavior of Cr(VI) on the α-Fe2O3 nanofibers.

Results

Very thin and porous α-Fe2O3 nanofibers have been successfully synthesized for investigation of Cr(VI) removal capability from synthetic wastewater. Batch experiments revealed that the as-prepared α-Fe2O3 nanofibers exhibited excellent Cr(VI) removal performance with a maximum adsorption capacity of 16.17 mg g?1. Furthermore, the adsorption capacity almost kept unchanged after recycling and reusing. The Cr(VI) adsorption process was found to follow the pseudo-second-order kinetics model, and the corresponding thermodynamic parameters ΔG°, ΔH°, and ΔS° at 298 K were calculated to be ?26.60 kJ?mol?1, ?3.32 kJ?mol?1, and 78.12 J?mol?1 K?1, respectively.

Conclusions

The as-prepared α-Fe2O3 nanofibers can be utilized as efficient low-cost nano-absorbents for removal and recovery of Cr(VI) from wastewater.  相似文献   

13.

Supported Fe2O3/WO3 nanocomposites were fabricated by an original vapor phase approach, involving the chemical vapor deposition (CVD) of Fe2O3 on Ti sheets and the subsequent radio frequency (RF)-sputtering of WO3. Particular attention was dedicated to the control of the W/Fe ratio, in order to tailor the composition of the resulting materials. The target systems were analyzed by the joint use of complementary techniques, that is, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy. The results showed the uniform decoration of α-Fe2O3 (hematite) globular particles by tiny WO3 aggregates, whose content could be controlled by modulations of the sole sputtering time. The photocatalytic degradation of phenol in the liquid phase was selected as a test reaction for a preliminary investigation of the system behavior in wastewater treatment applications. The system activity under both UV and Vis light illumination may open doors for further material optimization in view of real-world end-uses.

  相似文献   

14.
实验从焙烧温度、使用寿命考察了MoO_3/ZrO_2-TiO_2催化剂催化水解HCFC-22的性能。实验同时考察了水解温度、水蒸气浓度等反应条件对HCFC-22降解率的影响。结果表明,500℃焙烧的MoO_3/ZrO_2-TiO_2固体酸催化剂在催化水解温度为330℃,水蒸气浓度为76.58%时对1.00 cm3·min-1的HCFC-22的降解率可达到96.21%,主要降解产物为CO、CO2、HF、HCl和少量CHF3。且该MoO_3/ZrO_2-TiO_2催化剂在连续反应60 h后HCFC-22的降解率仍保持在82.00%以上。XRD表征表明,MoO_3/ZrO_2-TiO_2催化剂的主要结构为四方晶相的Zr(MoO_4)_2掺杂锐钛型的TiO_2。  相似文献   

15.
为提高臭氧氧化法对难降解有机污染物的降解效率,采用在催化臭氧氧化体系中引入H_2O_2的方法,建立催化O_3-H_2O_2联合氧化体系,使O_3与H_2O_2在体系中起协同作用。采用等体积浸渍法筛选制备了具有高催化性能的Fe-Mn/γ-Al_2O_3催化剂,应用于O_3/Fe-Mn/γ-Al_2O_3/H_2O_2复合体系协同催化臭氧氧化处理间甲酚模型废水。通过扫描电子显微镜(SEM)、物理吸附、X射线衍射(XRD)、X射线荧光光谱(XRF)、X射线光电子波谱(XPS)对催化剂的物理化学性质进行表征。考察了O_3投加量、H_2O_2投加量、初始pH、空速等因素对Fe-Mn/γ-Al_2O_3催化O_3-H_2O_2氧化间甲酚处理效果的影响,并采用GC-MS和LC-OCD,对Fe-Mn/γ-Al_2O_3催化O_3-H_2O_2氧化间甲酚的中间产物的类型及相对分子质量进行分析。结果表明,当以Fe-Mn/γ-Al_2O_3为催化剂时,协同催化氧化体系的最优处理参数为:间甲酚浓度100 mg·L~(-1),O_3投加量481 mg·L~(-1),反应时间10 min,空速6 h~(-1),H_2O_2投加量211 mg·L~(-1),进水pH 6.7。在此条件下,TOC去除率可达68.37%,间甲酚转化率可达100%。以上研究结果可为2种技术联用降解煤化工废水提供参考。  相似文献   

16.
Past, present, and possible future changes in the Baltic Sea acid–base and oxygen balances were studied using different numerical experiments and a catchment–sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes. These data and modeling indicate that traditional understandings of the nutrient availability–organic matter production relationship do not necessarily apply to the Baltic Sea. Modeling indicates that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, increased mineralization and biological production will amplify the seasonal surface pH cycle. The direction and magnitude of future pH changes are mainly controlled by atmospheric CO2 concentration. Apart from decreasing pH, we project a decreasing calcium carbonate saturation state and increasing hypoxic area.  相似文献   

17.
以甲烷为还原剂的选择性催化脱硝技术(SCR-CH_4)是一种很有潜力的新的脱硝方法,但催化剂的催化活性比较低。为了提高催化剂的活性以及抗水能力,可使用Fe对Al_2O_3负载的Ga_2O_3催化剂进行改性。采用共沉淀法,制备了xFe/Ga_2O_3-Al_2O_3催化剂,在固定床反应器中测试其选择性催化CH_4还原NO的性能。使用XRD、N_2吸附脱附、XPS、H_2-TPR、Py-IR等方法进行表征。结果表明:经过Fe改性后的催化剂提高了中高温的催化活性,提高了催化剂的N_2选择性,并改善了催化剂的抗水特性;5Fe/Ga_2O_3-Al_2O_3催化剂在500℃、富氧条件下,达到76%的NO转化率和100%的N_2选择性;在5%水蒸气条件下,5Fe/Ga_2O_3-Al_2O_3在500℃仍保持60%以上的NO转化率。N_2吸附脱附结果显示,引入Fe后,催化剂保持了原有比表面积,并且大大增加了催化剂孔径,可提高催化剂抗水能力。XPS与UV-vis显示,5Fe/Ga_2O_3-Al_2O_3具有高含量的游离态Fe~(3+),可提高催化剂的中高温活性。H2-TPR结果显示,Fe的引入提高了催化剂氧化还原能力,增强了原有Ga_2O_3-Al_2O_3中高温的还原活性。Py-FT-IR结果显示,催化剂表面同时存在Lewis酸和Br?nsted酸,铁的引入增加了催化剂表面的Lewis酸量。因此,Fe修饰Ga_2O_3-Al_2O_3是提高Ga_2O_3-Al_2O_3催化剂的SCR-CH_4脱硝性能的有效方法。  相似文献   

18.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

19.
用浸渍法制备了一系列稀土催化剂,研究了其催化CO还原SO2为单质硫的耐氧特性及影响其耐氧性能的主要因素,运用XRD技术分析了催化剂物相的变化及脱硫产物成分.结果表明,12% La2O3-8% CeO2/γ-Al2O3复组分催化剂比其他La2O3-CeO2/γ-Al2O3催化剂具有更好的耐氧性能;脱硫温度、催化剂用量、SO2与CO的摩尔比等对催化剂的耐氧性能均有明显的影响.最后,探讨了稀土催化剂脱硫机理,并分析在有O2条件下,引起脱硫率下降的原因是反应过程中O2与CO、S发生了竞争性反应.  相似文献   

20.
采用H2O2/Fe0、H2O2/Fe2+、H2O2/Fe3+3种体系分别对印染废水进行处理,研究pH值、H2O2投加量、不同价态铁元素的投加量及反应时间对印染废水的COD和色度处理效果的影响。实验最佳的处理条件:H2O2/Fe0体系在pH为3.0,Fe0投加量为3.0 mmol/L,H2O2投加量为9.0 m L/L,反应时间为40 min时,COD去除率达到95.99%,色度去除率达到100%;H2O2/Fe3+体系在pH为3.0,Fe3+投加量为5.0 mmol/L,H2O2投加量为12.5 m L/L,反应时间为100 min时,COD去除率达到95.89%,色度去除率达到100%;H2O2/Fe2+体系在pH为3.0,Fe2+投加量为6.0 mmol/L,H2O2投加量为12.0m L/L,反应时间为100 min时,COD去除率达到95.85%,色度去除率达到100%。对比分析3种体系在各因素下的处理结果,H2O2/Fe0体系和H2O2/Fe3+体系都要优于H2O2/Fe2+体系,其中H2O2/Fe0体系的处理效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号