首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have highlighted a reduction in occurrence and biomass of Ulva lactuca L. (Chlorophyceae) on shores where inputs of colliery waste occur. It was postulated that this was owing to an abrasive effect of colliery waste on macroalgal fronds. To test this, individual U. lactuca plants were exposed to colliery waste (three different grain size categories: < 500 microm, 500-2000 microm, and 0-2000 microm) in both shaken (turbulent) and still conditions in the laboratory. Over an 8-day period, U. lactuca plants lost weight when colliery waste was present and gained weight when no colliery waste was present. Weight loss was most pronounced in U. lactuca exposed to colliery waste of 500-2000 microm grain sizes in shaken conditions (- 18.8% +/- 4.65 SE, n = 4). However, greatest weight gain (+ 26.8% +/- 6.26 SE, n = 4) also occurred in the presence of colliery waste (0-2000 microm), but in still conditions. Weight gain was also observed after 60 days in still conditions in the presence of colliery waste (grain sizes 0-2000 microm); U. lactuca showed significant growth (+ 69% +/- 67 SE of starting weight, n = 5) compared with controls (- 51% +/- 41 SE, n = 5). These results suggest that 'large' grains of colliery waste act as a physical abrading agent on macroalgae when in turbulent conditions, and may be responsible for lowering of species richness of macroalgae where colliery waste inputs occur. However, by contrast, colliery waste in still conditions promotes the growth of U. lactuca, suggesting that, for example, rock pool flora may benefit from its presence  相似文献   

2.
The examinations of selected wastes and stream sediments from the vicinity of a chemical plant by sequential extraction procedures and direct methods, SEM/EDX and XRD, were carried out in order to identify the different forms of chromium, particularly as they are released to potential mobility. The results show that the top and bottom waste samples contain 37,756 and 53,650 μg g1 Cr, respectively, but about 7% and 2% of the total chromium type Cr(VI). The chemical extraction results show that the mobility of Cr in the upper part of the waste pile is significantly higher than in the bottom section; the exchangeable form of Cr accounts for 25% and < 1%, respectively, the last one irrespective of redox conditions. About 50% of Cr is associated with the reducible fraction of the top waste, and similar with the residual fraction in the bottom waste. Oxidation of the bottom waste shift some portion of Cr from residual to the moderately reducible fraction. The major Cr-forms in the river sediments are compounded with Fe-oxides. The < 2 μm size fraction of the selected sediment sample, particular enriched in chromium contained up to 73,000 μg g1 Cr with about 95% of this in the moderately reducible fraction, predominantly bound with oxyhydroxides. SEM/EDX and XRD analysis of wastes and river sediment indicate that the main insoluble Cr-phase is ferroan — (Mg, Fe) (Cr, Al)2O4 which would be dissolved mainly in the residual fraction.  相似文献   

3.

A huge accumulation of domestic waste has caused serious environmental contamination in rural areas of developing countries (RADIC). The characteristics and management of domestic waste are carefully discussed, based on field surveys and a literature review. The results indicate that the generation in most of RADIC is less than the median of 0.521 kg day−1 per capita in China, and much smaller than in rural areas of developed countries (RADEC). Organic waste and inert waste with an accumulative mass percentage of 72.31% are dominant components of domestic waste in the rural areas of China. There are trends of increasing amounts of kitchen waste, paper/cardboard, and plastic/rubber and a decreasing trend of ash waste. The RADIC composition of domestic waste had a high content of organic waste and a low content of recyclable waste compared to the RADEC. Domestic waste has good compressibility and a light bulk density ranging from 40 to 650 kg m−3. The moisture, ash, combustible, and calorific values of domestic waste were 53.31%, 18.03%, 28.67%, and 5368 kJ kg−1, respectively. The domestic waste has an abundance of nutrients including organic matter (39.05%), nitrogen (1.02%), phosphorus (0.50%), and potassium (1.42%). In RADIC, domestic waste can be used as an agricultural manure only after it has been collected and sorted for the potential risk of heavy metal accumulation. Based on these characteristics of domestic waste and the different situations of rural areas, four waste management modes including centralized treatment, decentralized treatment, group treatment, and mobile treatment are designed and discussed.

  相似文献   

4.
ABSTRACT

This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deac-tivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution emissions. Hospitals in Idaho, however, were still operating incinerators in the absence of state regulations specific to these types of facilities.  相似文献   

5.
The performance of a garbage disposal system to solubilize and mineralize food wastes through biological solubilization was evaluated through the examination of the effects of operational conditions like water supply volume, water supply frequency and aeration on the amount of waste solubilized, mineralized and accumulated in the reactor. The biological solubilization process consisted of a solubilization reactor and a circulation tank. Food waste and fresh water were supplied into the solubilization reactor with support media. Wastewater from the solubilization reactor was discharged to the circulation tank and water in the circulation tank was periodically pumped back to the solubilization reactor. In case of the total food waste loading of 16 kg m(3-1) d(-1), little carbon (0-5.7%) accumulated in the reactor as long as the system was kept under aerobic condition through large volume of water supply (higher than 3.5 lh(-1)) or applying aeration in the circulation tank. However, 42% of the loaded carbon accumulated under anaerobic condition in low water supply (less than 1.8 lh(-1)). The rest of the waste was either solubilized or mineralized. The aeration in the circulation tank, therefore, was effective to provide similar solubilization and mineralization as the large volume of water supply. However, frequency of feeding at the large volume of water supply had no significant effect on the amount of waste solubilization and mineralization.  相似文献   

6.
Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.  相似文献   

7.
ABSTRACT

Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.

CBPC binder and compaction can achieve 80-wt % waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was ~14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press.  相似文献   

8.
Codigestion of five wastes and municipal wastewater sludge was evaluated using full-scale testing. Synergistic, antagonistic, and neutral outcomes were observed depending on codigestate identity and concentration, highlighting the value of careful blending. Yeast waste resulted in notable synergism, increasing biogas production by over 50%, whereas aircraft deicing waste resulted in antagonism at high loadings and neutral outcomes at lower loadings. Restaurant waste codigestion resulted in neutral outcomes. The synergisim with yeast codigestates may have resulted from trace nutrients (i.e., iron, nickel, and cobalt) in the wastes that increased microbiological activity. Antagonist outcomes with deicing waste may have been the result of organic overload or inhibitory deicer constituents. Codigestion of wastes at the feed rates investigated was estimated to produce 0.50 ML/d of methane having an energy equivalent of 17 500 MJ/d. This was estimated to reduce net carbon dioxide emissions by 560 tonnes/y.  相似文献   

9.
In Kampala, Uganda, about 28,000 tons of waste is collected and delivered to a landfill every month. Kampala Capital City Authority (KCCA) records show that this represents approximately 40% of the waste generated in the city. The remaining uncollected waste is normally dumped in unauthorized sites, causing health and environmental problems. However, the organic fraction of domestic waste can provide an opportunity to improve livelihoods and incomes through fertilizer and energy production. This study characterized the municipal waste generated in Kampala and delivered to Kiteezi landfill between July 2011 and June 2012, that is, covering the dry and wet months. On each sampling day, waste was randomly selected from five trucks, sorted and weighed into different physical fractions. Samples of the organic waste from each truck were analyzed for total solids, major nutrients, and energy content. During the wet months, the waste consisted of 88.5% organics, 3.8% soft plastics, 2.8% hard plastics, 2.2% paper, 0.9% glass, 0.7% textiles and leather, 0.2% metals, and 1.0% others. During the dry months, the waste consisted of 94.8% organics, 2.4% soft plastics, 1.0% hard plastics, 0.7% papers, 0.3% glass, 0.3% textile and leather, 0.1% metals, and 0.3% others. The organic waste on average had a moisture content of 71.1% and contained 1.89% nitrogen, 0.27% phosphorus, and 1.95% potassium. The waste had an average gross energy content of 17.3 MJ/kg. It was concluded that the organic waste generated can be a suitable source of some plant nutrients that are useful especially in urban agriculture.
Implications:?The result of the waste characterization in Kampala was found to be significantly different from that obtained for other Sub-Saharan African (SSA) cities, showing that studies assuming average values for the waste fractions are likely to result in erroneous results. Furthermore, no reduction in organic fraction of the waste was noticed when compared with a study done two decades ago in spite of greatly improved economic status of Kampala city, a finding that is not in agreement with several other similar studies done for other SSA cities.  相似文献   

10.
酵母菌对厨余垃圾厌氧发酵产乙酸的影响   总被引:7,自引:1,他引:6  
研究了酵母菌对厌氧发酵过程中垃圾水解速率、挥发性有机酸(VFA)产量、乙酸产量的影响。结果表明:控制反应器中pH值为7时,接种酵母菌后,垃圾的水解速率明显提高,产酸速率和产酸量都明显高于不接种酵母菌的反应器,乙酸浓度能够达到9 458 mg/L,占挥发性有机酸总量的58.2%。垃圾本身含有的微生物对产酸也有促进作用,酵母菌和垃圾本身含有的微生物共同作用才能使得乙酸的产生最大化。  相似文献   

11.
About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.  相似文献   

12.
Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. CBPC binder and compaction can achieve 80-wt% waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was approximately 14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press.  相似文献   

13.
分析了废电子电器回收处理体系的问题,提出了一种适合我国国情的废电子电器回收处理体系模式,并对国家对废电子电器回收处理体系的支持问题进行了讨论。  相似文献   

14.
利用活性炭纤维有机废气吸附回收装置治理二氯甲烷废气   总被引:1,自引:0,他引:1  
文章介绍了一种化工生产过程中排出的二氯甲烷废气的治理装置———活性炭纤维有机废气吸附回收装置和治理工艺。由于采用了优越的吸附材料和先进的工艺设计 ,使吸附回收率达 97%以上 ,收到了很好的环境效益和经济效益  相似文献   

15.
A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper.  相似文献   

16.
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 106 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 103 t per $106. The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.  相似文献   

17.
为解决医疗行业废物排放量核定难的问题,通过对医疗机构废物产生量的调查、统计、分析,在确定医疗废物排放统计变量的基础上,得出相应的医疗废物排放系数,以供排污申报医疗废物排放量的核定。  相似文献   

18.
医疗废弃物焚烧挥发性氯含量与热值测试与估算   总被引:1,自引:1,他引:0  
通过测定上海某医疗废弃物处置公司设定燃烧工况条件下某时间段内烟气中HC l的平均排放速率,估算出上海地区医疗垃圾废物中的可燃烧转化氯含量在2.33%~2.64%左右;通过测定各较小采样时间段(2 m in)的烟气HC l浓度测定发现批次进料造成烟气中HC l浓度近4倍的波动,通过初步的热平衡估算得到医疗废弃物的热值大致在21.8 M J/kg,得到的结果可为我国医疗废弃物的焚烧工艺设计提供基础依据。  相似文献   

19.
In the rural area of the Tibetan Plateau (RATP), the characteristics of domestic waste, people’s environmental awareness, people’s willingness to pay and their influence factors were firstly studied by questionnaires, field samplings and laboratory tests. The results showed that, in the RATP, the generation of domestic waste was 85 g?d-1 per capita and it was mainly composed of plastics, inert waste, kitchen waste, glass and paper. The waste bulk density, moisture content, ash, combustible and low calorific value were 65 kg?m-3, 19.25%, 44.90%, 35.85% and 10,520 kJ?kg-1 respectively. These characteristics are influenced by income sources and geographical position to some extent. Classified collection should be promoted widely on the household and the village basis. Compost, fermentation, landfill, bioreactor landfill and semi-aerobic landfill have been approved as effective techniques to treat domestic waste, except incineration. The distance of 50–800 m between each collection facility and the disposal fee of around $0.8 per month per household are suggested. For suburbs or large population villages, it’s better to treat domestic waste by the centralized way. But for the remote rural areas, a decentralized way is proposed. Significantly, the educational and economic influence should be considered into an effective domestic waste management program.

Implications:?The current situatio n of the environment in the rural areas of the Tibetan Plateau (RATP) was surveyed. There, the generation of organics and moisture of domestic waste were low but ash, recyclables, and combustibles were high. People’s knowledge of domestic waste was absent but their participation in management was strong. Based on the current situation, compost, fermentation, and landfill were effective but incineration was inappropriate. Also, a localized mini landfill for a cluster of villages and or settlements was the best method there.  相似文献   

20.
Abstract

Batch and column tests allowed estimation of the mobilization of pollution of standard domestic waste in leachate and biogas. Three laboratory tests (biochemical methane potential (BMP), tank leaching test (TLT), and column tests) have been applied to evaluate the emission of pollutants in liquid and/or gas phase from reconstituted municipal solid waste (MSW) on the basis of French waste. In the case of the batch tests (BMP and TLT), BMP tests indicated a maximum organic carbon share produced by waste (biogas potential) equal to 59% of the initial carbon. The maximum quantity of carbon likely to be leached by the waste (TLT) corresponded to 6% of the carbon contained in the waste. On the other hand, during column tests, 3.3% of carbon was leached and 8% of carbon was evacuated in biogas at the end of a 440-day follow-up. It thus appears that the test conditions have a great in?uence on the remobilization of pollution. In particular it has been proven than the greater the optimization of the liquid/solid ratio, the agitation, the sowing, and the temperature, the greater the pollutant is leached. This study highlights the possible use of batch and column tests to evaluate the pollution risk of a landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号