共查询到15条相似文献,搜索用时 0 毫秒
1.
Environmental Science and Pollution Research - The phenomenon of drinking water scarcity has turned into the foremost issue that the world’s populace is facing today. The Algerian desert... 相似文献
2.
Environmental Science and Pollution Research - One of the major challenges faced by human society is the freshwater crisis and shortage of conventional energy. Solar still is considered as one of... 相似文献
3.
Environmental Science and Pollution Research - Demand for fresh water increases day by day. Solar desalination is one of the promising technologies to meet this demand in an economical fashion... 相似文献
4.
Solar thermal dryers are solar-operated gadgets utilized to dehumidify various products, especially food items and rubber sheets. This article provides detailed design, parametric studies, and an in-depth review of mixed-mode solar dryers (MMSD) with a case study of fish drying near coastal lines. Due to several advantages compared to open sun drying and prominent performance index compared to indirect and direct type solar dryers, mixed-mode solar dryers have large adaptability on the field. Moreover, mixed-mode solar thermal dryers with different augmentations are reviewed, for instance, mixed-mode solar dryers with evacuated tube collectors, phase change materials, ultraviolet rays stabilized housing, and dehumidifiers. The case study of fish drying near the coastal line of Gujarat, India has been carried out to study the present scenario of the drying activities. Hence, the objective of this review is to identify the capable mixed-mode solar dryer with heat recovery systems. Substantial reviews within the article suggest an essential need to implement the hybrid mixed-mode solar dryer cum distiller technology for small-scale enterprises that can simultaneously provide potable water near coastal lines along with drying of fishes from the solar dryer. Furthermore, future research demands such hybrid mixed-mode solar drying systems that strongly fulfill the requirements of local communities near coastal lines involved in fish drying activities. 相似文献
5.
Environmental Science and Pollution Research - Solar cells are considered one of the most important and widespread solar applications in the world. However, the performance of the PV modules is... 相似文献
6.
Environmental Science and Pollution Research - In this study, the effects of adding a condensing cavity in a passive single-basin solar still are investigated experimentally under the climate... 相似文献
7.
Water scarcity necessitates a cost-effective and productive solution. This study focused to enhance the productivity of single slope solar still by incorporating the better weight of palm flower powder (micro-sized) in the basin and micro phase change material heat storage bed under the basin. In this aspect, the different quantity of palm powder weights such as 10, 30, 50, 70, 100, 120 and 150 g in the basin was experimentally examined. The absorber basin containing 50 g of palm powder has better productivity of 37.25%, whereas for 10, 30, 70, 100, 120 and 150 g, they were 11.85, 24.78, 36.8, 33.05, 10.25 and ? 20.22% respectively. The influence of palm powder with different weight% impregnated in the paraffin wax was analysed. The maximum thermal conductivity of 0.33 W/m K was obtained in the sample containing palm flower powder of 20 wt%. The experimental investigation was carried out with 50 g of micro-sized palm powder in the basin and thermal storage bed under the basin containing 20 wt% of micro phase change material (PCMPFP-SS) and conventional solar still (CSS). The overall distillate output of PCMPFP-SS was 4670 and 4250 mL/m2 on day 1 and day 2 respectively. On the other hand, the overall distillate output for CSS was 3030 and 2800 mL/m2 on day 1 and day 2. From the economic analysis, it was found that the cost per litre (CPL) of PCMPFP-SS and CSS was $ 0.025 and $ 0.032 respectively. Moreover, the payback period of PCMPFP-SS was lowered from 5.1 to 4.1 months compared to CSS. 相似文献
8.
Background, aim, and scope In recent years, anthropogenic chemicals which can disrupt the hormonal systems of both humans and wildlife have been raised
to a major cause of concern. The aim of the present work was to determine the bioconcentration factors of the two major alkylphenols
(AP) of the Seine Estuary [4-nonylphenol (4 NP) and nonylphenol acetic acid (NP1EC)] and of the synthetic estrogen, estrogen
ethinylestradiol (EE2), in Eurytemora affinis after exposure in a continuous flow-through system under environmental realistic conditions. Moreover, the elimination of
these compounds in copepods from the Seine Estuary has been investigated by measuring concentrations after 1 week in clean
water in comparison to background levels. 相似文献
9.
Methane (CH 4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH 4 inlet load (IL) of 13 ± 0.5 g CH4 m ?3 h ?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH 4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 g ethanol m ?3 h ?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO 2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO 2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 g ethanol m ?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH 2O m ?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH 2O m ?1. 相似文献
10.
The migration of uranium(VI) in subsurface environments is strongly influenced by its adsorption/desorption reactions at the solid/solution interface. Phosphate is often present in subsurface systems and was shown to significantly affect U(VI) adsorption in previous batch experiments. In this study, column experiments were conducted to investigate the effects of phosphate on U(VI) adsorption and transport under flow conditions. The adsorption of U(VI) and phosphate was very low on pure quartz sand with negligible effects on U(VI) and phosphate transport. However, U(VI) and phosphate transport was retarded in a column packed with goethite-coated sand. The presence of phosphate, either as a co-solute with U(VI) or pre-adsorbed, greatly increased U(VI) adsorption and retardation. U(VI) and phosphate adsorption in our column experiments were rate-limited, and the adsorption of U(VI) and phosphate was not reversible, with kinetic limitations more pronounced for desorption than for adsorption. This study demonstrated the importance of phosphate in controlling U(VI) mobility in subsurface environments and helped illustrate some phenomena potentially applicable to U(VI) adsorption and transport in natural systems, especially where U(VI) adsorption is rate-limited. 相似文献
11.
Environmental Science and Pollution Research - The degradation efficiencies and pathways of metronidazole (MNZ) and amoxicillin (AMX) in binary mixtures by UV/TiO2 photocatalysis were studied. The... 相似文献
12.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L ?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L ?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt. ?1 day ?1 ( p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt. ?1 day ?1 ( p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt. ?1 day ?1 ( p?=?0.088) in males and 2.6 and 1.9 μg kg body wt. ?1 day ?1 ( p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L ?1 ( p?=?0.052) and in females 130 and 52 μg L ?1 ( p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L ?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt. ?1 day ?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population. 相似文献
13.
Sediments in aquatic ecosystems are often contaminated as a result of anthropogenic activities. Sediments and benthic organisms have been used to monitor trace metals contamination. However, due to the high variability of contaminant bioavailability, the attempt to link metal concentration in sediments and contamination of the organisms or ecotoxicological effect often lead to disappointing results. The technique of diffusive gradients in thin films (DGT) has been proposed as a relevant tool to study metal bioavailability, for example for accumulation in plants. In the present study, laboratory microcosm experiments were conducted with six contaminated sediments to compare metal accumulation in DGT and bioaccumulation in a chironomid (Chironomus riparius) for Cu, Cd and Pb . Metal accumulation in DGT was measured over time then modelled to determine two parameters of the dynamic response of the metals to DGT deployment: the size of the particulate labile pool and the kinetic of the solid-dissolved phase exchange. The mobility of metals was found metal and sediment dependent. A significant relationship between metal accumulated in DGT and bioaccumulated in chironomids was found for Cu and Pb. However, total metals in sediments were the best predictors of bioaccumulation. Nevertheless, the knowledge of the metals dynamic enhanced our ability to explain the different biological uptake observed in sediments of similar total metal concentrations. 相似文献
14.
In this study isotopic dilution methods were used to investigate the hypothesis that access to metals associated with specific chemical components in the soil that are not available to non-accumulator species could be involved in hyperaccumulation. The hyperaccumulator Thlaspi caerulescens and a non-accumulator species, Brassica napus, were grown in Cd and Zn enriched soil components calcite, goethite, charcoal and cryptomelane. The metal enriched components were aged to allow transformation of a proportion of added metals to non-labile forms. Results from the isotopic dilution L value method showed that despite taking up more metals, T. caerulescens accessed the same pool of metals as B. napus. Hence differential access to different solid-phase pools of metals appears to be an unlikely mechanism underlying metal hyperaccumulation. For all components except charcoal, L values for Cd and Zn were greater than the corresponding E values suggesting that E values may tend to underestimate the bioavailable fraction of metals in soils. 相似文献
15.
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions. 相似文献
|