首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
由于再生水中含有微量或者痕量的有机污染物,因此再生水利用过程中潜在的生态和健康风险一直受到社会的广泛关注.为探明再生水中多环芳烃(PAHs)、邻苯二甲酸酯(PAEs)和农药等典型有机污染物的赋存情况以及其在再生水厂提标改造前后的去除情况,本文于2019年对北京市5座再生水厂出水进行了连续6个月的监测,并对检出的PAHs、PAEs和农药进行了生态风险评价.结果显示:5座再生水厂出水中检出率为100%的污染物为PAHs中萘(NaP)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Flua)、芘(Pyr)、苯并[a]蒽(BaA)、(Chr)、苯并[a]芘(BaP),PAEs中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DNBP)、邻苯二甲酸二乙基己酯(DEHP)和农药中敌敌畏、阿特拉津.在各类污染物的组分分布上,总PAHs含量中以2、3环的PAHs为主,主要包括Phe、NaP、Flu、Ant和Ace,共占PAHs总量的55%以上;PAEs中以DEHP、DMP、DIBP和DNBP为主,共占总PAEs含量的80%以上;农药中以敌敌畏和阿特拉津为主.5座再生水厂出水中总PAHs的月平均浓度为53.6~65.9 ng·L-1;总PAEs的月平均浓度为4881.3~7050.2 ng·L-1;总农药的月平均浓度为77.7~97.2 ng·L-1.与污水处理厂改造前相比,出水中PAHs和PAEs的总浓度明显下降,其中PAHs总浓度下降约一个数量级;农药中有机氯农药在改造前文献报道有检出,而改造后我们的样品中均为未检出;通过对检出目标化合物的生态风险评价,所有PAHs,PAEs中DMP、DEHP、DEP,农药中阿特拉津和百菌清在各水厂出水中均为低风险污染物,但是PAEs中DIBP和DNBP在各水厂出水中均为中、高风险污染物;农药敌敌畏和毒死蜱在个别月份样品中表现出了中风险.  相似文献   

2.
白洋淀典型持久性有机污染物污染特征与风险评估   总被引:4,自引:0,他引:4  
对白洋淀表层水体和表层沉积物中多环芳烃(PAHs)、有机氯农药(OCPs)和多溴联苯醚(PBDEs)三类典型持久性有机污染物(POPs)的污染特征进行综合调查和分析.结果表明:①白洋淀水体中PAHs、OCPs和PBDEs浓度范围分别是71.32~228.27、2.62~6.13和0~6.5 ng·L-1;沉积物中PAHs、OCPs和PBDEs含量范围分别是163.20~861.43 ng·g-1、2.25~6.07 ng·g-1和230.96~1224.13 pg·g-1.与历史数据相比,白洋淀沉积物PAHs和OCPs含量均有明显下降;与国内外湖泊相比,白洋淀沉积物中PBDEs含量处于较低水平.②水体和沉积物PAHs污染来自于油类排放和木材、煤炭燃烧的共同作用;白洋淀水体和沉积物中OCPs组成均以HCHs为主(93.76%和63.10%),水体中HCHs主要来源于工业HCHs的降解,部分地区来源于大气的远距离传输和林丹的使用,DDTs则主要来源于历史残留.沉积物中HCHs主要来源于新的林丹使用,也有少量工业HCHs的输入,DDTs则以历史残留为主,可能部分地区存在新的DDTs输入;白洋淀水体中PBDEs组成以BDE-2为主(65.80%),可能主要来源于大气远距离传输和高溴代联苯醚的降解,沉积物中PBDEs组成以BDE-209为主(63.82%),主要来源为商用的十溴联苯醚.③生态风险评价结果表明,白洋淀尚无明显生态风险,但部分采样点存在生态风险的可能性,应加强监控.  相似文献   

3.
东北小兴凯湖沉积物POPs污染特征及生态风险评价   总被引:6,自引:6,他引:0  
采用GC-MS分析了小兴凯湖表层沉积物多环芳烃(PAHs)、有机氯农药(OCPs)和邻-苯二甲酸酯(PAEs)的污染特征,探讨了污染物的主要来源及生物毒性风险.结果表明:①小兴凯湖沉积物中PAHs含量范围在82.1~534.6 ng·g-1之间,西北湖区含量较高.沉积物中OCPs和PAEs含量范围分别在4.8~50.4 ng·g-1和33.3~401.6 ng·g-1之间,东南湖区含量较高;②沉积物中PAHs以3~5环化合物为主(占85%以上),主要为燃烧源,其中煤和薪柴燃烧贡献47%,汽油和柴油燃烧贡献39%,石油产品泄漏贡献14%.OCPs以六氯环己烷(HCH)为主(占78%),主要来源于新的林丹的使用和少量工业HCHs的输入.PAEs以邻-苯二甲酸二正丁酯(DBP)和邻-苯二甲酸二(2-乙基己)酯(DEHP)为主(占94%),生活垃圾和工农业生产为其主要来源;③小兴凯湖沉积物中PAHs、OCPs和PAEs在东北地区处于低水平污染,相比于国内其他地区的湖泊河流,总体处于低污染水平,目前无生态风险,但部分点位OCPs具有中度生态风险.  相似文献   

4.
松花湖是吉林省面积最大的湖泊和重要水源地,具有防洪排涝、灌溉供水、航运旅游等重要功能.为探究松花湖中PAHs(多环芳烃)和PAEs(邻苯二甲酸酯)的主要污染来源及生物毒性风险,于2017年7月采集松花湖21个表层沉积物样品,采用GC-MS测试16种US EPA(美国环境保护局)优先控制PAHs和6种PAEs的质量分数,并通过统计学方法对调查结果进行分析.结果表明:①松花湖沉积物中w(∑16PAHs)范围为23.1~554.8 ng/g,平均值和中位值分别为172.9和123.2 ng/g,w(∑16PAHs)高值分布在漂河镇和丰满乡附近湖区,主要来源于石油燃烧污染,贡献率为57.9%,其次为煤及生物质燃烧污染、石油泄露污染,贡献率分别为21.1%、21.0%.②松花湖沉积物中w(∑6PAEs)范围为33.7~2 062.3 ng/g,平均值和中位值分别为240.4和72.7 ng/g,主要成分为DBP(邻苯二甲酸二正丁酯)和DEHP(邻酞酸二辛酯),w(∑6PAEs)高值分布在旺起镇附近湖区,其来源主要与城镇生活污染输入有关.③松花湖沉积物中PAHs、PAEs污染生态风险较低,只有部分采样点存在低度潜在生态风险,但旺起镇附近湖区沉积物中的w(DBP)已经临近ERL(效应区间低值),需加以关注.研究显示,松花湖PAHs、PAEs污染程度较低,为加强松花湖饮用水源地保护,应着重加强交通燃油污染源的风险防控,同时在乡镇附近湖区应加强燃煤和生活污染源的监管力度.   相似文献   

5.
升金湖水体优先污染物筛选与风险评价   总被引:3,自引:2,他引:1  
为保护升金湖国家自然保护区湿地的生态环境,以7大类168种人类化学品为靶向分析目标物,研究其在升金湖水体中的赋存水平及空间分布特征(O)、综合化合物持久性(P)和生物积累性(B)等毒害性评价指标以及生态风险(E)和人体健康风险(H)等毒性参数,采用综合评分法筛选识别升金湖水体优先污染物,构建升金湖水体优控清单,评价升金湖优先污染物水环境生态及健康风险.结果表明,升金湖水体7大类化合物[挥发性有机物(VOCs)、多环芳烃(PAHs)、有机氯农药(OCPs)、多氯联苯(PCBs)、邻-苯二甲酸酯(PAEs)、抗生素(ANTs)以及金属元素(HMs)]污染普遍,其中上湖污染负荷高于中湖和下湖,呈现坝前蓄积现象.以污染物类别计,综合评分法优先污染物筛选结果显示升金湖水体检出化学品优先级顺序为:PAEs > OCPs > HMs > PCBs > PAHs > VOCs > ANTs.高优先级污染物清单中综合得分最高的10种化合物包括:邻-苯二甲酸二乙基己酯(DEMP)、邻-苯二甲酸二环己酯(DCHP)、PCB138、邻-苯二甲酸二正辛酯(DOP)、邻-苯二甲酸二壬酯(DNP)、七氯(HC)、p,p''-滴滴涕(DDT)、钡(Ba)、环氧七氯(HCE)和邻-苯二甲酸二己酯(DHP).升金湖水体优先污染物生态风险商(RQ)为4.3~15.9,具有较高的生态风险,且上湖区风险高于中、下湖区.人体暴露健康风险评价表明,HMs的非致癌风险最大(风险指数HI>1),其次为PAEs和OCPs,优先污染物通过饮水和皮肤接触途径暴露对人体健康产生的致癌风险(人体终生致癌风险ILCR<10-6)可以忽略.本研究优化基于环境监测数据建立的优先污染物综合评分法,全面考虑了化学品毒害特性、生态及人体健康暴露风险(OPBEH),为开展广泛的湖泊流域水环境优先污染物筛选提供统一的方法学指导,并为建立相应湖泊流域优控清单,制定优先污染物排放和管控标准提供科学依据.  相似文献   

6.
对白洋淀表层水体和表层沉积物中多环芳烃(PAHs)、有机氯农药(OCPs)和多溴联苯醚(PBDEs)三类典型持久性有机污染物(POPs)的污染特征进行综合调查和分析。结果表明:(1)白洋淀水体中PAHs、OCPs和PBDEs浓度范围分别是71.32~228.27、2.62~6.13和0~6.5 ng·L-1;沉积物中PAHs、OCPs和PBDEs含量范围分别是163.20~861.43ng·g-1、2.25~6.07ng·g-1和230.96~1224.13pg·g-1。与历史数据相比,白洋淀沉积物PAHs和OCPs含量均有明显下降;与国内外湖泊相比,白洋淀沉积物中PBDEs含量处于较低水平。(2)水体和沉积物PAHs污染来自于油类排放和木材、煤炭燃烧的共同作用;白洋淀水体和沉积物中OCPs组成均以HCHs为主(93.76%,63.10%),水体中HCHs主要来源于工业HCHs的降解,部分地区来源于大气的远距离传输和林丹的使用,DDTs则主要来源于历史残留。沉积物中HCHs主要来源于新的林丹的使用,也有少量工业HCHs的输入,DDTs则以历史残留为主,可能部分地区存在新的DDTs输入;白洋淀水体中PBDEs组成以BD1E-2为主(65.80%),可能主要来源于大气远距离传输和高溴代联苯醚的降解,沉积物中PBDEs组成以BDE-209为主(63.82%),主要来源为商用的十溴联苯醚。(3)生态风险评价结果表明,白洋淀尚无明显生态风险,但部分采样点存在生态风险的可能性,应加强监控。  相似文献   

7.
对白洋淀表层水体和表层沉积物中多环芳烃(PAHs)、有机氯农药(OCPs)和多溴联苯醚(PBDEs)三类典型持久性有机污染物(POPs)的污染特征进行综合调查和分析。结果表明:(1)白洋淀水体中PAHs、OCPs和PBDEs浓度范围分别是71.32~228.27、2.62~6.13和0~6.5 ng·L-1;沉积物中PAHs、OCPs和PBDEs含量范围分别是163.20~861.43ng·g-1、2.25~6.07ng·g-1和230.96~1224.13pg·g-1。与历史数据相比,白洋淀沉积物PAHs和OCPs含量均有明显下降;与国内外湖泊相比,白洋淀沉积物中PBDEs含量处于较低水平。(2)水体和沉积物PAHs污染来自于油类排放和木材、煤炭燃烧的共同作用;白洋淀水体和沉积物中OCPs组成均以HCHs为主(93.76%,63.10%),水体中HCHs主要来源于工业HCHs的降解,部分地区来源于大气的远距离传输和林丹的使用,DDTs则主要来源于历史残留。沉积物中HCHs主要来源于新的林丹的使用,也有少量工业HCHs的输入,DDTs则以历史残留为主,可能部分地区存在新的DDTs输入;白洋淀水体中PBDEs组成以BD1E-2为主(65.80%),可能主要来源于大气远距离传输和高溴代联苯醚的降解,沉积物中PBDEs组成以BDE-209为主(63.82%),主要来源为商用的十溴联苯醚。(3)生态风险评价结果表明,白洋淀尚无明显生态风险,但部分采样点存在生态风险的可能性,应加强监控。  相似文献   

8.
为了解废旧塑料处置活动对区域水体的影响,采用气相质谱联用仪(GC-MS),对河北省某废旧塑料处置地沉积物中16种PAEs(phthalate esters,邻苯二甲酸酯)的污染特征和生态风险进行了研究. 结果表明:研究样地的w(∑16PAEs)为0.527~102 μg/g, 平均值为18.9 μg/g,其中,DEHP〔邻苯二甲酸(2-乙基己基)酯〕是PAEs最主要的污染单体,平均占w(∑PAEs)的66.6%. 对该处置地的污染物源分析表明,沉积物中PAEs主要来源于废旧塑料回收利用过程中的环境排放. 沉积物中w(DEHP)(14.2 μg/g)和w(DBP)(1.41 μg/g)(DBP为邻苯二甲酸二正丁酯)均超过各自环境风险限值(ERLs),w(DIBP)(DIBP为邻苯二甲酸二异丁酯)超过了美国华盛顿州颁布的沉积物质量警戒限值(0.610 μg/g). 研究显示,沉积物中DBP对鱼类的生态风险及DEHP对藻类和鱼类的生态风险水平不可接受,应引起足够重视.   相似文献   

9.
董磊  汤显强  林莉  郦超  黎睿  吴敏 《环境科学》2018,39(6):2588-2599
持久性有机污染物(POPs)在我国地表水和沉积物等环境介质中被广泛检出,对生态环境和人类健康具有潜在的风险.针对现阶段长江经济带核心区域(武汉段)POPs的污染状况信息严重缺乏的问题,本文以使用量较大且环境中检出高的PAHs和PAEs为研究对象,通过对2016年长江武汉段干流15个采样点丰水期水体和沉积物中16种PAHs和6种PAEs污染物含量水平、分布特征和污染来源的系统分析.结果表明,长江武汉段2016年丰水期水体和沉积物中ΣPAHs浓度分别为20.8~90.4 ng·L~(-1)(均值40.7 ng·L~(-1))和46.1~424.0 ng·g~(-1)(均值191.8 ng·g~(-1)),ΣPAEs浓度分别为280.9~779.0 ng·L~(-1)(均值538.6 ng·L~(-1))和1 346.2~7 641.1 ng·g~(-1)(均值3 699.5 ng·g~(-1)).PAHs和PAEs含量均低于国家地表水环境质量标准规定的限值,污染程度小.长江武汉段水体中PAHs以2~3环为主,沉积物中PAHs以2~3环和4环为主,水体和沉积物中PAEs以DEHP和DBP为主.基于比率及主成分分析,长江武汉段水体与沉积物中PAHs主要的来源为煤和生物质燃烧,以及石油来源;水体和沉积物中PAEs的主要来源于塑料和重化工工业,以及生活垃圾.水体及沉积物中两类典型POPs(PAHs和PAEs)对人类健康会产生潜在有害影响,需加强监控.研究成果可为长江(武汉段)环境保护提供基础数据和技术支撑.  相似文献   

10.
杨沛林  王济  王志康  张广龙  秦樊鑫 《环境工程》2020,38(1):172-177,27
为了解贵阳市饮用水源地水环境中邻苯二甲酸酯(PAEs)的污染情况,采用三重四级杆串联质谱联用技术(GC/MSMS)对阿哈水库、红枫湖、百花湖水体中PAEs有机污染物进行定量分析。结果显示:研究区域水体中的PAEs主要为邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二(2-乙基)己酯(DEHP);PAEs在丰水期、平水期、枯水期呈现出不稳定状态;研究区水源地水体中PAEs的致癌和非致癌风险值均低于可接受参考值;健康风险评价模型一计算的健康风险值远低于美国环境保护署(USEPA)、国家辐射防护委员会(ICRP)、瑞典环境保护局等机构的推荐值,评价模型二计算的健康风险值与上述机构接近。贵阳市饮用水源地PAEs未对人体造成健康风险或构成致癌风险,水体中PAE的含量与国内部分饮用水源中PAEs的含量基本上处于同一水平。  相似文献   

11.
为了解太湖重点区域水环境中邻苯二甲酸酯(phthalate esters,PAEs)的污染情况,对丰水期、枯水期和平水期目标区域的水体和沉积物中6种PAEs进行分析,3个水期水体中PAEs浓度分别为1.6~11.2μg·L-1(平均值3.68μg·L-1)、nd~6.21μg·L-1(平均值1.3μg·L-1)和nd~1.72μg·L-1(平均值0.48μg·L-1),从上游至下游未呈现明显浓度变化,其中邻苯二甲酸二(2-乙基己基)酯[di(2-ethylhexyl)phthalate,DEHP]对ΣPAEs浓度的贡献比较大,邻苯二甲酸二正丁酯(di-n-butyl phthalate,DBP)在某些采样点高于国内标准.沉积物中PAEs含量范围在0.74~6.90μg·g-1(平均值2.64μg·g-1),主要成分是DBP和DEHP.生态风险评价的结果表明,DBP和DEHP是重点区域中最主要的风险因子;沉积物PAEs中所有种类的含量均未超过风险评价低值(effect range low,ERL),对生物的潜在危害较小.与国内外河流、湖泊与河口等沉积物中PAEs污染水平比较,太湖重点区域水环境中PAEs污染属于中等水平.工业污染和城市活动是水环境中邻苯二甲酸酯的主要来源.  相似文献   

12.
王成龙  邹欣庆  赵一飞  李宝杰 《环境科学》2016,37(10):3789-3797
为研究长江流域水体中多环芳烃(PAHs)污染特征和生态风险,于2015年8月采集了长江干流及主要支流水体样品19个.使用固相萃取方法提取PAHs,经净化后,利用气相色谱-质谱联用仪测定了16种优先控制PAHs(ΣPAHs)的浓度.结果表明,水体中ΣPAHs浓度范围为17.7~110 ng·L-1,平均浓度为42.6 ng·L-1.水体中PAHs主要以低环为主(2~3环),占水体ΣPAHs总量的67.7%.同分异构体比值法表明,研究区PAHs主要来自于化石燃料和木材等生物质燃料燃烧的产物以及石油类物质泄漏和化石燃料燃烧混合产物.正定矩阵因子分解法(PMF)结果表明,研究区PAHs主要有4种来源,依次为:生物质和煤炭燃烧混合源40.1%,石油源19.6%,交通源17.5%,焦炭源22.8%.生态风险评价结果表明,低环PAHs的生态风险处于较高水平,各采样点风险熵值表明,乌江站及下游区域生态风险较高,但总体看来,长江流域总体生态风险处于较低水平.  相似文献   

13.
卢晓霞  张姝  陈超琪  侯珍  杨君君 《环境科学》2012,33(10):3426-3433
从天津滨海地区不同地表水表层沉积物取样,测定4类持久性有机污染物即多环芳烃(PAHs)、有机氯农药(OCPs)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)的含量,目的是了解该区4类持久性有机污染物的含量特征并对其生态风险进行评估.结果表明,天津滨海地区10个沉积物采样点中16种优先控制的PAHs均有检出,PAHs总含量范围为274.06~2 656.65μg.kg-1、平均为1 198.51μg.kg-1.化石燃料(例如煤和汽油)的燃烧是该区表层沉积物中PAHs的主要来源,个别地方混有石油类产品的输入.在大沽排污河采样点,22种OCPs总含量为3 103.36μg.kg-1,35种PCBs和14种PBDEs的总含量分别为87.31μg.kg-1和13.88μg.kg-1.其它采样点OCPs、PCBs和PBDEs的含量均较低.该区表层沉积物中总有机碳含量与PAHs的相关性很好,但与OCPs、PCBs和PBDEs的相关性较差,这可能与PAHs主要来自面源污染而其它污染物主要来自点源污染有关.沉积物中PAHs(尤其是低分子量PAHs)的风险较大,在多个采样点中,萘和/或苊的含量超过可能效应浓度,极有可能对底栖生物产生不良影响.在大沽排污河,七氯环氧化物和林丹(gamma-BHC)超过可能效应浓度,极有可能对底栖生物产生不良影响;其它采样点OCPs的生态风险较小.整体上,PCBs和PBDEs的生态风险较小.  相似文献   

14.
为揭示大学校园室内环境中PM2.5及其中PAEs(phthalate esters,邻苯二甲酸酯)的污染特征和师生暴露风险,以陕西师范大学长安校区为例,采集了校园秋冬季6个采样点52个室内PM2.5样品,利用气相色谱质谱联用仪检测了其中22种PAEs的浓度,分析了其构成和时空分布,评估了师生暴露健康风险.结果表明:①不同采样点PM2.5中22种PAEs的总浓度范围为237~413 μg/m3,其中6种优控PAEs的总浓度范围为4.81~7.47 μg/m3;室内PM2.5中的PAEs主要为邻苯二甲酸二异丁酯、邻苯二甲酸二环己酯和邻苯二甲酸二异壬酯,均为非优控PAEs,且这3种单体的浓度远高于6种优控PAEs单体的浓度.②各采样点检出的6种优控PAEs单体不同,图书馆和教室中6种优控PAEs均被检出,宿舍中检出4种,家属区中检出3种.③季节变化对室内PM2.5浓度及其中的PAEs浓度均会产生影响,冬季室内PM2.5平均浓度(58.3 μg/m3)高于秋季(55.4 μg/m3),12月6种优控PAEs单体浓度范围为0.250~3.86 μg/m3,明显高于其他月份.④来源解析表明,校园室内空气PM2.5中的PAEs主要来自室内装饰材料的释放,学生油墨及化妆品和个人护肤品的使用,以及增塑剂的使用及涂层的释放.⑤6种优控PAEs对人体产生的非致癌风险均较低,邻苯二甲酸丁基苄基酯和邻苯二甲酸二(2-乙基己基)酯的致癌风险均低于标准限值(1×10-6),二者的致癌风险均可忽略.研究显示,校园内不同室内环境中PM2.5污染程度及其中的PAEs浓度和构成均存在一定差异,师生暴露于室内空气PM2.5中6种优控PAEs的非致癌风险均较低,致癌风险可忽略,但环境中非优控PAEs的污染与风险应给予足够的关注.   相似文献   

15.
为研究乌梁素海水体与表层沉积物中半挥发性有机物(SVOCs)的污染特征和风险水平,对乌梁素海7个点位的水体和沉积物样品进行检测分析。结果表明:水体与沉积物中SVOCs的总浓度为449.7~691.0 ng/L及144.4~587.5μg/kg;多环芳烃(PAHs)和邻苯二甲酸酯(PAEs)是所有样品中发现的主要污染物;其他SVOCs未检测到或仅检测到微量。水体与沉积物中PAHs污染主要来自石油源及煤炭、生物质燃料燃烧混合来源;PAEs污染主要来自塑料和化工工业,以及生活垃圾;水体和沉积物中主要污染物的生态风险总体上呈低风险。从饮水和暴露接触的角度,乌梁素海呈现的健康风险水平较低。  相似文献   

16.
11种邻苯二甲酸酯在好氧污水处理系统中的归趋   总被引:1,自引:1,他引:0  
邻苯二甲酸酯具有内分泌干扰效应,已对环境生物带来了较大的风险.研究了11种邻苯二甲酸酯的好氧生物降解性,及在活性污泥中的去除特性.快速生物降解性测试结果表明邻苯二甲酸二甲酯(dimethyl phthalate,DMP)、邻苯二甲酸二甲氧乙酯(dimethoxyethyl phthalate,BMEP)、邻苯二甲酸二乙酯(diethyl phthalate,DEP)、邻苯二甲酸二丁酯(dibutyl phthalate,DBP)、邻苯二甲酸二异丁酯(diisobutyl phthalate,DIBP)、邻苯二甲酸二戊酯(dinamyl phthalate,DNPP)、邻苯二甲酸二己酯(di-n-hexyl phthalate,DNHP)以及邻苯二甲酸-二(2-乙基)己酯[bis(2-ethylhexyl)phthalate,DEHP]具有快速生物降解性,邻苯二甲酸二壬酯(dinonyl phthalate,DNP)及邻苯二甲酸二环己酯(dicyclohexyl phthalate,DHP)28d生物降解但未通过10 d观察期,邻苯二甲酸二苯酯(diphenyl phthalate,DPP)28 d生物降解率只有43.5%.好氧污泥降解动力学实验中,11种邻苯二甲酸酯(phthalic acid esters,PAEs)降解随时间变化呈典型的一级动力学规律,相关系数r20.96,降解速率常数为0.021~1.11h-1,降解半衰期在0.625~32.7 h之间.在室内好氧污泥模拟实验中,当水力停留时间为12 h时候,DNPP生物去除率为55%~70%,其余10种PAEs去除率大于80%,当水力停留时间为24 h时,所有PAEs去除率都达到90%以上.使用GC/MS分析了PAEs在好氧生化污水处理厂中的暴露水平,结果表明,DMP、DEP、DIBP、DBP以及DEHP在二级出水浓度分别为ND~44.0、ND~12.0、60.4~594、88.0~823和130~728 ng·L~(-1),PAEs在不同STP中的去除率结果差异较大,可能与STP运行工艺和运营水平有关.STP模型预测结果表明,PAEs在STP中的去除过程主要为生物降解,DPP、DNP和DEHP由于较高的lg Koc,可一定程度地被污泥吸附去除.  相似文献   

17.
重庆主城区流域邻苯二甲酸酯生态风险评价   总被引:4,自引:0,他引:4  
以长江、嘉陵江重庆主城区段为研究水域,利用Agilent6890N气相色谱仪对丰水期该研究水域12个采样点水体中五种邻苯二甲酸酯(PAEs)含量进行测定,分析了PAEs在该区域水体中丰水期的分布特征并进行了生态安全评价。结果表明:丰水期水体中∑PAEs的浓度范围为0.87μg/L-55.66μg/L;DBP与DEHP为优先污染物,其浓度范围在0.15μg/L-28.32μg/L与0.26μg/L-26.29μg/L;按商值法对PAEs进行生态安全评价,DMP、DEP对该水域中水生动植物无生态风险,DBP和DEHP存在潜在低风险。  相似文献   

18.
胶州湾表层水体中邻苯二甲酸酯的污染特征和生态风险   总被引:5,自引:5,他引:0  
以胶州湾为研究区域,选取15种常用邻苯二甲酸酯(phthalate esters,PAEs)作为检测目标,采用搅拌棒吸附萃取-气相色谱质谱联用的方法,于2015年8月和11月以及2016年1月对胶州湾开展3次大面积调查,检测分析了胶州湾表层水体中PAEs的含量、组成、空间分布和季节变化,同时对胶州湾水体中PAEs进行了风险评价.结果表明:①2015年8月和11月、2016年1月胶州湾表层海水中PAEs的总浓度范围分别为3.63~21.20、2.24~12.60和0.01~4.15μg·L-1,平均浓度分别为11.10、5.26和0.80 μg·L-1.②受入海径流和洋流影响,胶州湾表层水体中PAEs浓度表现出近岸高,远岸低,且总体东岸浓度高于西岸.与国内外其他研究相比,胶州湾表层水体中PAEs含量处于中等水平,但在海洋中属于污染较严重的海域.33个季节PAEs浓度分布差异较大,受降雨量等因素影响整体呈现夏季 > 秋季 > 冬季的趋势,③个季节主要检出种类均为DBP、BBP和DEHP.④生态风险评估结果表明,胶州湾各站位DBP的风险商值(RQ)均大于1,即生态风险较大,其他PAEs(RQ<1)风险较小.PAEs已成为胶州湾中一类具有潜在威胁的有机污染物,其在环境中的行为和生态危害仍需进一步研究.  相似文献   

19.
嘉陵江重庆段表层水体多环芳烃的污染特征   总被引:3,自引:4,他引:3  
蔡文良  罗固源  许晓毅  杜娴 《环境科学》2012,33(7):2341-2346
为了确定嘉陵江重庆段表层水体中多环芳烃(PAHs)的组成、来源及污染特征,于2009年8月采集了8个表层水样,利用GC-MS仪器测定了16种优先控制PAHs的浓度.结果表明,水体中16种优先控制PAHs浓度范围为467.13~987.97ng.L-1,平均浓度值为702.91 ng.L-1,水体PAHs浓度和溶解性有机碳(DOC)含量呈现明显的线性正相关.PAHs的组成以2~3环PAHs为主,占水体ΣPAHs总量的68.90%.寸滩区域水体PAHs主要来源于木材和煤的燃烧污染,朝天门区域水体PAHs主要来源于石油源,嘉陵江重庆段其他区域水体PAHs主要来源于液体石化燃料的燃烧.虽然嘉陵江重庆段整体污染水平较低,但是5个取样点的地表水苯并(a)芘(BaP)含量超过国家地表水质量标准.  相似文献   

20.
王晓迪  臧淑英  张玉红  王凡  杨兴  左一龙 《环境科学》2015,36(11):4291-4301
2012年2~4月采集大庆湖泊群18个典型湖泊30个水体和36个鱼体样品,并对水体和5种鱼组织(鱼鳃、肝脏、鱼脑、肾脏和肌肉)样品中16种多环芳烃(PAHs)浓度进行分析测定.结果显示,水中PAHs总量为0.2~1.21μg·L-1,浓度最高值出现在月亮泡.利用统计学聚类分析方法对18个湖泊水体PAHs浓度进行分类,并进一步应用PAHs比值分析和物种敏感性分布模型对不同湖泊组湖泊水体PAHs分别进行来源分析和生态风险评估.结果表明,18个湖泊水体PAHs浓度统一聚类分成4个湖泊组,其中月亮泡(YLP)和东大海(DDH)两个湖泊分别单独成一类,其他14个湖泊被聚类分为XHH组和DQSK组两个湖泊组.湖泊水体中PAHs除了YLP组主要来自石油污染,其他湖泊PAHs的输入均为木柴和煤燃烧所致.根据国际和国内地表水环境质量标准,大庆湖泊群4个湖泊组水体PAHs浓度水平均有不同程度超标.其中YLP组和XHH组大部分水样中PAHs浓度超出美国环保署(US EPA)规定的16种PAHs限量值,尤其YLP组中致癌性最强的苯并[a]芘浓度已经超过了我国地表水环境质量标准;而DQSK组和DDH组也有少量几种PAHs超出水质标准.大庆湖泊群鲤鱼种和鲢鱼种5种组织器官内16种PAHs浓度检测结果及统计分析结果显示,除鲤鱼鳃中的蒽浓度显著高于鲢鱼鳃,其他15种PAHs在两类鱼种中无显著差异.而同鱼种不同组织器官中PAHs浓度存在明显差异性,肝脏和肾脏作为污染物外源传播的主要器官,其浓度明显高于肌肉、鳃和脑组织中PAHs的浓度,是PAHs在鱼体内累积的重要器官.对水生生物的生态风险和淡水鱼消费健康风险评估结果显示,4个典型湖泊组水体中PAHs对水生生物生态风险均较小,鲤鱼和鲢鱼鱼肉消费也均无饮食健康风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号