首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil taken from a former cattle tick dip site in NSW Australia, was remediated with a chemical leaching technology. The pre- and post-remediated soil (20g) was dispersed in water (100mL) and subjected to passive diffusion using polymeric membranes. The remediation reduced tDDT from 1174.3 microg/g to 102.9 microg/g (ash weight basis), which was further reduced to 43.2 microg/g with composting. The membranes accumulated 41.3 microg tDDT/g from the dip soil, 49.2 microg tDDT/g from the chemically leached soil and 3.1 microg tDDT/g from the leached composted soil. The chemical leaching removed over 90% of the tDDT, but released soil bound DDT, which was converted to DDE, while 2.99 microg/g was accumulated by the membranes from dip soil, 37.52 microg/g was accumulated from remediated soil. Composting, however, almost eliminated the availability for passive diffusion by the membranes from 50-60 microg/g in remediated soil to 3 -3.5 microg/g in composted soil. Variability studies of the membranes using eight replicates demonstrated that the accumulation by the membranes was reproducible with an average relative error of 20.3% for p,p'-DDT in soil type two, whilst the lowest average relative error for p,p'-DDE was 4.3%, suggesting that triplicate analyses will achieve acceptable accuracy.  相似文献   

2.

Owing to their ultrathin two-dimensional structure and efficient catalytic ability for persulfate activation, graphene-based nanocarbons exhibit considerable application potential in fabricating carbonaceous composite membranes for in situ catalytic oxidation to remove organic pollutants. This approach offers significant advantages over conventional batch systems. However, the relationships between the physicochemical properties of carbon mats and performance of graphene-based catalytic membranes in water purification remain ambiguous. Herein, we summarize the main mechanisms of in situ catalytic oxidation and the facile fabrication strategies of carbonaceous composite membranes. Different factors influencing the performance of graphene-based catalytic membranes are comprehensively discussed. The defective level, heteroatom doping, and stacking morphology of carbon mats and operational conditions during filtration play critical roles in the oxidative degradation of target pollutants. Long-term operation leads to the deterioration of catalytic activity and transmembrane pressure, especially in the complex water matrix. Finally, the present challenges and future perspectives are presented to improve the anti-fouling performance and catalytic stability of membranes and develop scalable fabrication methods to promote the engineering applications of in situ catalytic oxidation in real water purification.

  相似文献   

3.
基于Donnan分离原理,研究磷酸盐离子在无电压条件下通过阴离子交换膜的迁移过程以及膜内磷酸盐的分布。结果表明,阴离子交换膜采用NaCl溶液浸泡预处理后,促进磷酸盐离子的第1步迁移过程,磷酸盐离子的迁移去除效果提高5%。受体液NaCl浓度是阴离子交换膜内磷酸盐含量的控制因素,其浓度从0.001 mol/L增加至0.1 mol/L时,膜内磷酸盐含量由0.077 mg/cm2降至0.002 mg/cm2。受体液NaCl浓度较高时,有利于促进磷酸盐离子的第3步迁移过程,且2层膜内磷酸盐含量的分布由给体液至受体液呈递减趋势。温度升高,低浓度受体液条件下膜内磷酸盐的含量增加,对高浓度受体液条件下膜内磷酸盐的含量几乎无影响。  相似文献   

4.
Soil taken from a former cattle tick dip site in NSW Australia, was remediated with a chemical leaching technology. The pre- and post-remediated soil (20g) was dispersed in water (100mL) and subjected to passive diffusion using polymeric membranes. The remediation reduced tDDT from 1174.3μg/g to 102.9μg/g (ash weight basis), which was further reduced to 43.2μg/g with composting. The membranes accumulated 41.3μg tDDT/g from the dip soil, 49.2μg tDDT/g from the chemically leached soil and 3.1μg tDDT/g from the leached composted soil. The chemical leaching removed over 90% of the tDDT, but released soil bound DDT, which was converted to DDE, while 2.99μg/g was accumulated by the membranes from dip soil, 37.52μg/g was accumulated from remediated soil. Composting, however, almost eliminated the availability for passive diffusion by the membranes from 50 – 60μg/g in remediated soil to 3–3.5μg/g in composted soil. Variability studies of the membranes using eight replicates demonstrated that the accumulation by the membranes was reproducible with an average relative error of 20.3% for p,p'-DDT in soil type two, whilst the lowest average relative error for p,p'-DDE was 4.3%, suggesting that triplicate analyses will achieve acceptable accuracy.  相似文献   

5.
The rejection of emerging trace organics by a variety of commercial reverse osmosis (RO), nanofiltration (NF), and ultra-low-pressure RO (ULPRO) membranes was investigated using TFC-HR, NF-90, NF-200, TFC-SR2, and XLE spiral membrane elements (Koch Membrane Systems, Wilmington, Massachusetts) to simulate operational conditions for drinking-water treatment and wastewater reclamation. In general, the presence of effluent organic matter (EfOM) improved the rejection of ionic organics by tight NF and RO membranes, as compared to a type-II water matrix (adjusted by ionic strength and hardness), likely as a result of a decreased negatively charged membrane surface. Rejection of ionic pharmaceutical residues and pesticides exceeded 95% by NF-90, XLE, and TFC-HR membranes and was above 89% for the NF-200 membrane. Hydrophobic nonionic compounds, such as bromoform and chloroform, exhibited a high initial rejection, as a result of both hydrophobic-hydrophobic solute-membrane interactions and steric exclusion, but rejection decreased significantly after 10 hours of operation because of partitioning of solutes through the membranes. This resulted in a partial removal of disinfection byproducts by the RO membrane TFC-HR. In a type-II water matrix, the effect of increasing feed water recoveries on rejection of hydrophilic ionic and nonionic compounds was compound-dependent and not consistent for different membranes. The presence of EfOM, however, could neutralize the effect of hydrodynamic operating condition on rejection performance. The ULPRO and tight NF membranes were operated at lower feed pressure, as compared to the TFC-HR, and provided a product water quality similar to a conventional RO membrane, regarding trace organics of interest.  相似文献   

6.

In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0–1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.

  相似文献   

7.
观察新型五孔PVDF共混改性纤维膜SEM形貌特征,采用逐级通量法测定PVDF/PMMA和PVDF/TPU共混改性膜的临界通量,研究在次临界和超临界通量下A(PVDF/PMMA)与B(PVDF/TPU)2种管式膜组件的过滤和抗污染性能,并在次临界通量下处理地表水。结果表明,PVDF共混改性膜具有优良的微观结构,且膜B性能较好;膜A、B的临界通量分别为12 L/(m2.h)和10 L/(m2.h);膜组件B比膜组件A抗污染性能好。次临界通量下膜组件的运行比超临界通量下的稳定。与采用单独超滤处理某市地表水相比,2种膜组件采用混凝+超滤工艺的运行处理效果更好,且膜组件B比膜组件A处理效果佳。  相似文献   

8.
Zhu A  Long F  Wang X  Zhu W  Ma J 《Chemosphere》2007,67(8):1558-1565
Nanofiltration (NF) experiments were conducted with simulated solution containing bicarbonate hardness and with three membranes: NF90, NF270 and NF-. The operating pressure was kept at 1.0 MPa, the water sample temperature was kept at 25 degrees C, the velocity on membrane surface was approximately 1 m s(-1) and the feeding pH values were 6.0, 6.5, 7.0, 7.5 and 8.0. Except for sampling, both the concentrate and the permeate were cycled to the feeding tank in order to keep the concentration constant. Experimental results demonstrated that the flux of NF90 membrane was slightly affected by the feeding pH, while the flux of NF270 and NF membranes was augmented when the feeding was acidified. The permeate pH of each membrane was always lower than the concentrate pH, indicating that the H(+) was negative rejected. This phenomenon was observed not only in the filtration of carbonate solution, but also in the filtration of the NaCl solution and the tap water. It is assumed that the small positive H(+) can easily permeate the NF membranes having negative charges. The more charges the membrane has, the more H(+) is negative rejected. High permeability of H(+) can speed decomposition of HCO(3)(-) into CO(3)(2-) and then accelerate CaCO(3) crystallization on membrane surface, which is unfavorable for membrane performances. In NF processes, it is better to considerate the membrane's selection and the feeding's pretreatment simultaneously, and it is beneficial for preventing scaling when selecting the membranes with less negative charges if only the water qualify can meet the demands.  相似文献   

9.
为讨论预涂动态膜的抗污染特性,测定了陶瓷膜、高岭土预涂动态膜和高岭土/MnO2复合预涂动态膜分别在乳化油废水处理中的阻力分布,并用SEM扫描电镜对污染预涂动态膜形貌进行了表征。结果表明,乳化油污染阻力明显高于基膜(或陶瓷膜)固有阻力及涂膜粒子形成的阻力,乳化油对预涂动态膜或陶瓷膜的污染是导致膜通量衰减的主要原因;高岭土和复合预涂动态膜所用基膜污染阻力低于陶瓷膜的内部污染阻力,其中复合预涂动态膜所用基膜的污染阻力最小;复合动态膜层比高岭土动态膜层的污染程度低;污染预涂动态膜表面呈现明显的凝胶态物质,其基膜外壁面未呈现凝胶态物质。处理乳化油废水中,动态膜层可有效保护基膜,表现出了较强的抗污染性能。  相似文献   

10.
Environmental Science and Pollution Research - The possibility of replacing traditional toxic solvents normally employed during the preparation of polymeric membranes with greener alternatives...  相似文献   

11.
Environmental Science and Pollution Research - Membrane technologies are used intensively for desalination and wastewater treatment. Water filtration using ceramic membranes exhibited high...  相似文献   

12.
The aim of this study was to investigate the performances of polyamide nanofiltration membranes during water reclamation. The study was conducted using nanofiltration concentrates obtained from two different nanofiltration drinking water treatment plants placed in the northern part of Serbia (Kikinda and Zrenjanin). Used nanofiltration concentrates contained high concentrations of arsenic (45 and 451 μg/L) and natural organic matter (43.1 and 224.40 mgKMnO4/L). Performances of polyamide nanofiltration membranes during water reclamation were investigated under various fluxes and transmembrane pressures in order to obtain drinking water from nanofiltration concentrates and, therefore, reduce the amount of produced concentrates and minimize the waste that has to be discharged in the environment. Applied polyamide nanofiltration membranes showed better removal efficiency during water reclamation when the concentrate with higher content of arsenic and natural organic matter was used while the obtained permeates were in accordance with European regulations. This study showed that total concentrate yield can be reduced to ~5 % of the optimum flux value, in both experiments. The obtained result for concentrate yield under the optimum flux presents considerable amount of reclaimed drinking water and valuable reduced quantity of produced wastewater.  相似文献   

13.
Environmental Science and Pollution Research - Metal-free carbonaceous composite membranes have been proven to effectively drive novel in situ catalytic oxidation for the degradation of organic...  相似文献   

14.
Environmental Science and Pollution Research - Meningitis is an inflammation of the protective membranes called meninges and fluid adjacent the brain and spinal cord. The inflammatory progression...  相似文献   

15.
Environmental Science and Pollution Research - Treatment of textile wastewater using ultrafiltration membranes was carried out in this study. Since membrane fouling is a major operational problem...  相似文献   

16.
Parshetti GK  Doong RA 《Chemosphere》2012,86(4):392-399
In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE > PCE > CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol−1, showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction.  相似文献   

17.
Environmental Science and Pollution Research - This work is focused on the design and preparation of polymer inclusion membranes (PIMs) for potential applications for stannous cation sequestration...  相似文献   

18.
Environmental Science and Pollution Research - Mixed matrix membranes (MMMs) were fabricated by the hydrothermal synthesis of ordered mesoporous KIT-6 type silica and incorporating in polyimide...  相似文献   

19.
Environmental Science and Pollution Research - Functionalized multiwalled carbon nanotube (f-MWCNT) mixed matrix forward osmosis (FO) membranes were fabricated by phase inversion, and the mechanism...  相似文献   

20.
The objective of this study was to determine the interaction of modified bilayer lipid membranes (BLMs) with lead and tin organoderivatives. The relative depolarization, of the lipid membrane, caused by organo metals, was used to estimate their activity. Dodecyltrimethylammonium bromide (TMDA) and sodium dodecylsulfonate (AS-12) were used to modify BLMs. The trialkylderivatives of tin (IV) were found to be the most active towards the lipid membrane, whereas dialkyltin (IV) and trialkyllead (IV) derivatives were less active. Also, a correlation exists between depolarization activity and the lipophilicity of organo metal hydrolysis products. The surface charge of modified membranes had a secondary influence on depolarization efficiency of the tin and lead derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号