首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.  相似文献   

2.
Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.  相似文献   

3.
Landfill gas (LFG) management is one of the most important tasks for landfill operation and closure because of its impact in potential global warming. The aim of this work is to present a case history evaluating an LFG capture and treatment system for the present landfill facility in Córdoba, Argentina. The results may be relevant for many developing countries around the world where landfill gas is not being properly managed. The LFG generation is evaluated by modeling gas production applying the zero-order model, Landfill Gas Emissions Model (LandGEM; U.S. Environmental Protection Agency [EPA]), Scholl Canyon model, and triangular model. Variability in waste properties, weather, and landfill management conditions are analyzed in order to evaluate the feasibility of implementing different treatment systems. The results show the advantages of capturing and treating LFG in order to reduce the emissions of gases responsible for global warming and to determine the revenue rate needed for the project’s financial requirements. This particular project reduces by half the emission of equivalent tons of carbon dioxide (CO2) compared with the situation where there is no gas treatment. In addition, the study highlights the need for a change in the electricity prices if it is to be economically feasible to implement the project in the current Argentinean electrical market.

Implications: Methane has 21 times more greenhouse gas potential than carbon dioxide. Because of that, it is of great importance to adequately manage biogas emissions from landfills. In addition, it is environmentally convenient to use this product as an alternative energy source, since it prevents methane emissions while preventing fossil fuel consumption, minimizing carbon dioxide emissions. Performed analysis indicated that biogas capturing and energy generation implies 3 times less equivalent carbon dioxide emissions; however, a change in the Argentinean electrical market fees are required to guarantee the financial feasibility of the project.  相似文献   


4.
ABSTRACT

Oil and natural gas wells are a prominent source of the greenhouse gas methane (CH4), but most measurements are from newer, high producing wells. There are nearly 700,000 marginal “stripper” wells in the US, which produce less than 15 barrels of oil equivalent (BOE) d?1. We made direct measurements of CH4 and volatile organic carbon (VOC) emissions from marginal oil and gas wells in the Appalachian Basin of southeastern Ohio, all producing < 1 BOE d?1. Methane and VOC emissions followed a skewed distribution, with many wells having zero or low emissions and a few wells responsible for the majority of emissions. The average CH4 emission rate from marginal wells was 128 g h?1 (median: 18 g h?1; range: 0– 907 g h?1). Follow-up measurements at five wells indicated high emissions were not episodic. Some wells were emitting all or more of the reported gas produced at each well, or venting gas from wells with no reported gas production. Measurements were made from wellheads only, not tanks, so our estimates may be conservative. Stochastic processes such as maintenance may be the main driver of emissions. Marginal wells are a disproportionate source of CH4 and VOCs relative to oil and gas production. We estimate that oil and gas wells in this lowest production category emit approximately 11% of total annual CH4 from oil and gas production in the EPA greenhouse gas inventory, although they produce about 0.2% of oil and 0.4% of gas in the US per year.

Implications: Low producing marginal wells are the most abundant type of oil and gas well in the United States, and a surprising number of them are venting all or more of their reported produced gas to the atmosphere. This makes marginal wells a disproportionate greenhouse gas emissions source compared to their energy return, and a good target for environmental mitigation.  相似文献   

5.
Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NOx, SO2, CO, CO2, and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications.

Implications: Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to quality and quantity of biogas from anaerobic co-digestion of food waste and municipal wastewater sludge, as well as impacts on air quality from biopower generation using this biogas. The need and performance of conditioning/pretreatment systems for biopower generation were also assessed.  相似文献   


6.
This study aims to develop an inexact two-stage optimization model to gather manure distributed over the southwest Taiwan and convert it into bioenergy. In the method, local optimization of each hauling zone is performed first using a gray mixed-integer programming model. Then, the hauling zones are prioritized by its performance on four gray scenarios. Although the biogas yield and the manure generation rate are ambiguous, one can easily evaluate his opportunity and risk by gray interval, which is a group of values within the lower and upper bounds. The analyses reveal that the biogas yield dominates the profit in this project, and it leads to the failure of the project when the biogas yield is below the level of 0.2 m3 kg?1. With the goal of reducing 45% of methane emissions from pig farms, seven hauling zones are required to be developed. The farmers living in these zones from the project get carbon credits ranging from 478 to 3269 ton CO2eq per year, and the investors own the carbon credits in the range of 3264–11820 ton CO2eq per year. Through the carbon trading, both the investors and pig farmers are able to make profits by trading their carbon credits.
Implications:Biogas recovered from hoggery can be used as a bioenergy source and mitigate the atmospheric greenhouse effect and global warming. This research develops an inexact two-stage optimization model to evaluate the potential of gathering manure for biogas and converting it into bioenergy. The analyses reveal that the biogas yield dominates the profit in this project, and it leads to the failure of the project when the biogas yield is below the level of 0.2 m3 kg?1. This study has provided a useful reference for the management of biogas production and carbon trading from hoggery for bioenergy.  相似文献   

7.
A significant obstacle in evaluating mitigation strategies for flaring and venting in the upstream oil and gas industry is the lack of publicly available data on the chemical composition of the gas. This information is required to determine the economic value of the gas, infrastructure and processing requirements, and potential emissions or emissions credits, all of which have significant impact on the economics of such strategies. This paper describes a method for estimating the composition of solution gas being flared and vented at individual facilities, and presents results derived for Alberta, Canada, which sits at the heart of the Western Canadian Sedimentary Basin. Using large amounts of raw data obtained through the Alberta Energy Resources Conservation Board, a relational database was created and specialized queries were developed to link production stream data, raw gas samples, and geography to create production-linked gas composition profiles for approximately half of the currently active facilities. These were used to create composition maps for the entire region, to which the remaining facilities with unknown compositions were geographically linked. The derived data were used to compute a range of solution gas composition profiles and greenhouse gas emission factors, providing new insight into flaring and venting in the region and enabling informed analysis of future management and mitigation strategies.

Implications: Accurate and transparent determination of environmental impacts of flaring and venting of gas associated with oil production, and potential benefits of mitigation, is severely hampered by the lack of publicly available gas composition data. In jurisdictions within the Western Canadian Sedimentary Basin, frameworks exist for regulating and trading carbon offset credits but current potential for mitigation is limited by a lack of standardized methods for calculating CO2 equivalent emissions. The composition and emission factor data derived in this paper will be useful to industry, regulators, policy researchers, and entrepreneurs seeking statistically significant and openly available data necessary to manage and mitigate upstream flaring and venting activity and estimate greenhouse gas impacts.  相似文献   

8.
The acceleration of the composting process and the improvement of compost quality have been explored by evaluating the efficacy of various additives, inoculating with specific microorganisms and the application of various biosurfactants. The magnesium-aluminum silicate attapulgite is a low-cost potential composting additive, but its effects on aerobic composting are unknown. This study investigated the effects of attapulgite application on compost production and quality during the aerobic composting of chicken manure. Addition of attapulgite significantly increased the temperature (p < 0.05) while it reduced compost total organic carbon (TOC) and seed germination indices (GIs) throughout the process. Its addition enhanced nitrate concentrations, promoted organic matter degradation, increased seed germination indices, and accelerated the composting process. Interestingly, attapulgite addition did not increase the population of ammonia-oxidizing bacteria. These results suggest that attapulgite is a good additive for the composting industry.

Implications: We investigated the addition of two forms of attapulgite during aerobic composting of chicken manure to determine their effects under strict composting environmental parameter control. Our results provides primary evidence that attapulgite may have potential for application in the composting industry.

All treatments showed no increase within the first 15 days. However, emissions increased for all treatments within 15–45 days, reaching approximately 6300, 2000, and 4000 mg/m2 from the control, artifactitious attapulgite, and raw attapulgite treatments, respectively.  相似文献   

9.
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19?×?23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2?×?2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four ?28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.

Implications: Livestock manure produces odor and emits GHGs (CO2, CH4, and N2O) at different stages of production and management practices that have significant environmental concerns. Thus, it is important to measure GHG contributions from different sources and develop appropriate mitigation strategies for minimizing GHG contribution from livestock production facilities. Two dietary protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding were studied. The results indicated that dietary protein levels and bedding vs. no bedding had very little effect on GHG emissions and manure composition under open feedlot conditions in North Dakota climatic conditions and management practices.  相似文献   

10.
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.

Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.  相似文献   

11.
Abstract

This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or “demonstration” cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA’s major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.  相似文献   

12.

Background, aim and scope  

Studies on the contribution of milk production to global greenhouse gas (GHG) emissions are rare (FAO 2010) and often based on crude data which do not appropriately reflect the heterogeneity of farming systems. This article estimates GHG emissions from milk production in different dairy regions of the world based on a harmonised farm data and assesses the contribution of milk production to global GHG emissions.  相似文献   

13.
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO2-eq per t of carcass and 6.83 kg CO2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.  相似文献   

14.
Background, aim, and scope  To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO2 caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost–benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. Materials and methods  The economical benefits resulting in the reduction of CO2 emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment’s recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO2 emitted was calculated, and the economical saving, according to the market prices, was evaluated. Results  The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO2 emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO2, the global saving would be 2.88 million euros (US$ 4.26 million). Discussion  After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. Conclusions  The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Recommendations and perspectives  Cost–benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH4 and N2O, as well as other carcinogenic and non-carcinogenic micropollutants.  相似文献   

15.

One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  相似文献   

16.
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990–2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50–70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance.  相似文献   

17.
Dynamics of livestock and poultry manure nutrient was analyzed at a provincial scale from 2002 to 2008. The nutrient capacity of 18 kinds of croplands and grasslands to assimilate nutrients was assessed in the same temporal–spatial scale. Manure nitrogen (N) had increased from 5.111 to 6.228 million tons (MT), while manure phosphorus (P) increased from 1.382 to 1.607 MT. Manure N and P share similar spatial patterns of yields, but proportion of specialized livestock husbandry and contribution of leading livestock categories (swine, cattle, cow, sheep, layer chicken, broiler chicken) were different. The nutrients generated from dominant seven provinces took more than about half of total manure N in China. After subtracting the chemical fertilizers, there were some manure nutrient capacities in western part of China. Risk analysis of manure nutrient pollution overload in eastern and southern parts of China was serious, which should restrict livestock's developments. Amount of chemical fertilizers applied should be reduced to make room for manure nutrients. For the sake of greenhouse effects, the emission of methane (CH4) and nitrous oxide (NO x ) emissions in China is serious for the global change, thus merits further statistics and studies. The spatial and temporal pattern of Chinese manure nutrient pollution from livestock and the assimilation capacity of cropland and grassland can provide useful information for policy development on Chinese soil environment and livestock.  相似文献   

18.

The study tries to discover the impact of financial and social indicators’ growth towards environmental considerations to understand the drivers of economic growth and carbon dioxide emissions change in G7 countries. The DEA-like composite index has been used to examine the tradeoff between financial and social indicator matters in environmental consideration by using a multi-objective goal programming approach. The data from 2008 to 2018 is collected from G-7 countries. The results from the DEA-like composite index reveals that there is a mixed condition of environmental sustainability in G-7 countries where the USA is performing better and Japan is performing worse among the set of other countries. The further result shows that the energy and fiscal indicators help to decrease the dangerous gas emissions. Divergent to that, the human and financial index positively contributes to greenhouse gas emissions. Fostering sustainable development is essential to successfully reduce emissions, meet established objectives, and ensure steady development. The study provides valuable information for policymakers.

  相似文献   

19.
Tsai WT  Chyan JM 《Chemosphere》2006,63(1):22-30
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.  相似文献   

20.
In this study, emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin are predicted (with uncertainty estimates) from 2015–2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010–2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010–2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015–2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards.

Implications: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah’s Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号