首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils.  相似文献   

2.
Immobilization of potentially toxic metals using different soil amendments   总被引:10,自引:0,他引:10  
The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them.  相似文献   

3.
The solid-solution distribution or partition coefficient (Kd) is a measure of affinity of potentially toxic elements (PTE) for soil colloids. Kd plays a key role in several models for defining PTE guideline values in soils and for assessing environmental risks, and its value depends on edaphic and climatic conditions of the sites where the soils occur. This study quantified Kd values for Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn from representative soil samples from Brazil’s eastern Amazon region, which measures 1.2 million km2. The Kd values obtained were lower than those set by both international and Brazilian environmental agencies and were correlated with the pH, Fe and Mn oxide content, and cationic exchange capacity of the soils. The following order of decreasing affinity was observed: Pb?>?Cu?>?Hg?>?Cr?>?Cd?≈?Co?>?Ni?>?Zn.  相似文献   

4.
Udovic M  Lestan D 《Chemosphere》2012,88(6):718-724
The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

6.
This article presents basic data on the content of Cr, Fe, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb in staple foodstuffs and agriproduct grown in Russia (Astrakhan region and the town of Belovo) and Egypt (Helwan region). The dependence of the concentration of metals in agriproducts on the content and chemical form of existence in irrigation water and soils is indicated.  相似文献   

7.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

8.
9.
Environmental Science and Pollution Research - The application of sewage sludge (SS) in the soil can be a valuable way to increase its content of organic matter. However, the concentration of...  相似文献   

10.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   

11.
The study area (Szklary Massif, SW Poland) comprises three sites of different soil provenance: (1) natural serpentine Cambisol, (2) anthroposol situated on waste dump and (3) cultivated Inceptisol developed on glacial tills next to the dump. Potentially toxic elements (PTE) have either lithogenic or anthropogenic origins in these sites. The chemical partitioning of Co, Cr, Cu, Ni, Pb and Zn among solid forms was determined by sequential extractions coupled with direct mineral identifications (SEM, electron microprobe analysis - EMPA, and XRD). Examination of solid residues after several extraction steps was conducted in order to discuss the indirect speciation obtained by the extraction method. Total concentrations of PTE having anthropogenic origin greatly exceed those of lithogenic origin. Mobility of studied PTE is variable in the different environments except for Cr which is always mostly found in residual fractions of extractions. Cu and Pb are more mobile than Cr and Co in all soils. Zn is more stable (Cu>Pb>Ni>Co>Zn>Cr) in the serpentine soil and cultivated epipedon (Pb>Cu>Zn>Ni>Co>Cr) than in the anthroposol (Zn>CuPb>Ni>Co>Cr). PTE of lithogenic origin are generally less mobile than those from anthropogenic origin except Ni which is more mobile in the serpentine soil. Nonetheless, mineral forms of metals better determine their mobility than metal origin. Identification by direct methods of the PTE mineral form was not possible for metals present at low concentrations (Cu, Pb). However, direct mineralogical examinations of the solid residues of several extractions steps improved the assessment of the PTE solid speciation and mobility, particularly for Cr, Ni and Zn.  相似文献   

12.
The management of dredged sediments is an important issue in coastal regions where the marine sediments are highly polluted by metals and organic pollutants. In this paper, mineral-based amendments (hematite, zero-valent iron and zeolite) were used to stabilize metallic pollutants (As, Cd, Cu, Mo, Ni, Pb, and Zn) in a contaminated marine sediment sample. Mineral-based amendments were tested at three application rates (5 %, 10 %, and 15 %) in batch experiments in order to select the best amendment to perform column experiments. Batch tests have shown that hematite was the most efficient amendment to stabilize inorganic pollutants (As, Cd, Cu, Mo, Ni, Pb, and Zn) in the studied sediment. Based on batch tests, hematite was used at one application rate equal to 5 % to conduct column experiments. Column tests confirmed that hematite was able to decrease metal concentrations in leachates from stabilized sediment. The stabilization rates were particularly high for Cd (67 %), Mo (80 %), and Pb (90 %). The Microtox solid phase test showed that hematite could decrease significantly the toxicity of stabilized sediment. Based on batch and column experiments, it emerged that hematite could be a suitable adsorbent to stabilize metals in dredged marine sediment.  相似文献   

13.

Remediation strategies using soil amendments should consider the time dependence of metal availability to identify amendments that can sustainably reduce available pollutant concentrations over time. Drying-wetting cycles were applied on amendments, soils and soil + amendment mixtures, to mimic ageing at field level and investigate its effect on extractable Cd, Cu, Ni, Pb and Zn concentrations from three contaminated soils. The amendments investigated were municipal waste organic compost and biochars. The amendments, soils and mixtures were characterised by their physicochemical properties at different ageing times. The amendments were also characterised in terms of sorption capacity for Cd and Cu. The sorption capacity and the physicochemical properties of the amendments remained constant over the period examined. When mixed with the soils, amendments, especially the compost, immediately reduced the extractable metals in the soils with low pH and acid neutralisation capacity, due to the increase in pH and buffering capacity of the mixtures. The amendments had a relatively minor impact on the metal availability concentrations for the soil with substantially high acid neutralisation capacity. The most important changes in extractable metal concentrations were observed at the beginning of the experiments, ageing having a minor effect on metal concentrations when compared with the initial effect of amendments.

  相似文献   

14.
To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE’s) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE’s only to a limited extent.The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Feox) and to the reactivity of PTE’s in soils which in fact control the soluble fraction of the contaminants.The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE’s in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils.  相似文献   

15.
Glyphosate mobility from terrestrial to aquatic environments has raised concerns about it. Utilizing soil’s inherent properties along with sorption properties of aged biochar, we hypothesized that selective application of biochar would be more effective in economic terms for glyphosate sorption on contrasting soils. To test this hypothesis, batch experiments and liquid scintillation counting for 14 Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 2016, 263, 7885.[Crossref], [Web of Science ®] [Google Scholar]C labeled glyphosate were used. The sorption behavior of glyphosate was examined in four contrasting Australian soil types (Oxisol, Vertisol, Entisol, and Inceptisol) amended with aged biochar to determine glyphosate concentrations by measuring 14 Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 2016, 263, 7885.[Crossref], [Web of Science ®] [Google Scholar]C activity using liquid scintillation counting. Freundlich parameters were calculated for soil-soil/biochar combinations. The pattern of glyphosate sorption was Oxisol?>?Vertisol?>?Entisol?>?Inceptisol. Oxisol adsorbed approximately five times more glyphosate compared with Inceptisol. Oxisol soil system adsorbed maximum amount of glyphosate principally due to the presence of iron-aluminum oxides exhibiting variable charges which got increased due to the presence of aged biochar. Considering all the soil/soil-biochar systems, Inceptisol soil system showed the least adsorption of glyphosate. A significant contribution of char was observed only in the Entisol soil system and the finding is valuable as char can be applied in Entisol soil systems to control glyphosate mobility.  相似文献   

16.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   

17.
Environmental Science and Pollution Research - As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the...  相似文献   

18.
Soil pollution with potentially toxic elements (PTEs) resulting from rapid industrial development has caused major concerns. Selected PTEs and their accumulation and distribution in soils and rice (Oryza sativa) collected from Changshu, east China, were analyzed to evaluate the potential health risk to the local population. The soils were primarily contaminated with Hg, followed by Cu, Cd, Pb, and Zn. The concentrations of Pb, Hg, and Cd of 46, 32, and 1 rice samples exceeded their national maximum allowable levels in foods, respectively. Spatial distributions of total Cr, Cu, Pb, Zn, and Cd in soils shared similar geographical trends. The risk assessment of PTEs through rice consumption suggests that the concentrations of Cu, Pb, and Cd in some rice samples exceed their reference oral dose for adults and children. In general, there was no target hazard quotient value of any individual element that was greater than 1, but hazard index values for adults and children were 1.726 and 1.523, respectively.  相似文献   

19.
Environmental Science and Pollution Research - Pollution of the potentially toxic elements (PTEs) is a major concern in the metal ore-mining environment. Active polymetallic industries and mines...  相似文献   

20.
Yu XY  Mu CL  Gu C  Liu C  Liu XJ 《Chemosphere》2011,85(8):1284-1289
Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号