首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Thermal venting is a remediation technique suitable to the liquid unsaturated zone to enhance recovery of less-volatile residual hydrocarbon contaminants. Thermal venting is different to traditional soil venting because heated air instead of air at ambient conditions is applied to the contaminated zone. The vapor pressure of a less-volatile contaminants is typically increased by temperature causing the gas-phase concentrations to increase by three- to five-fold over a temperature increase of 20–30°C. The work described in this first paper provides the theoretical framework of analysis related to thermal venting. The analysis included nonisothermal gas flow, thermal energy transport and multicomponent mass transport in a multiphase porous medium. The transient gas flow analysis included the effect of temperature on fluid properties and gas compressibility. The heat energy transport analysis was performed under the thermodynamic equilibrium condition with phase-summed effective thermal properties. Multi-component mass transport was performed under local equilibrium for partitioning between phases. Model verification was performed to the extend possible using analytical and available experimental data for different physical processes. The second paper of this two-part series will demonstrate the applicability of thermal venting technique through numerical simulations of hypothetical laboratory and field-scale scenarios.  相似文献   

2.
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment.

Implications: The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.  相似文献   


3.
Roadside air pollution due to heavy traffic is one of the unsettled issues in the atmospheric environment in urban areas. As a practical application of a Computational Fluid Dynamics (CFD) model, a coupled mesoscale-CFD model was applied to the Ikegamicho area of Kawasaki City, Japan. For this study, the effects of traffic-produced flow and turbulence (TPFT) on the dispersion of the pollutants near the heavy traffic road were mainly investigated in an actual urban area. First, a series of preliminary CFD calculations was conducted for a road tunnel field experiment to obtain a fitting parameter for the traffic-produced flow. The calculation was then performed for 24 h in December 2005 around Ikegamicho, and the results were compared with the data at a roadside monitoring post in the area, located 10 m from the boundary of the ground road. In general, the effect of traffic-produced flow and turbulence was limited at the downstream side of the roads. The maximum concentration of NOx was reduced and smoothed out along the traffic flow by the traffic-produced flow and turbulence on the road. The effects of traffic-produced turbulence on the dispersion of pollutants were greater than those of traffic-produced flow; however, the effects of traffic-produced flow were not negligible. The concentration of pollutants was not particularly dependent on the turbulent Schmidt number because most of the emission sources were introduced as volume sources in the present calculations, and the effect caused by differences in the material diffusion coefficient was not particularly significant at the outside of the road.  相似文献   

4.
Abstract

A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours.  相似文献   

5.
In spite of the importance of interzonal air flow for indoor air quality assessment, few studies have characterized these flows. As part of the Boston Exposure Assessment in Microenvironments (BEAM) Study, air flow rates were estimated within 45 residences in the Boston area, most over two seasons. Thirty-five residences had basements, 11 of which also had attached garages, and 10 other residences had common apartment hallways. Air flow rates between zones were calculated using tracer gases (PFTs and SF6) and mass-balance models. Mean air flow rates from the basement to the occupied zone were significantly higher in the winter (174 m3 h−1) than in the summer (67 m3 h−1). The mean percent of the total air flow within the occupied zone of the residence from the basement was 26% (SD=34%) in the summer and 47% (SD=26%) in the winter while the mean percent from apartment hallways was 22% (SD=33%). Residences with garages attached to the basement had higher air flow rates to the adjacent zone (means from 50 to 887 m3 h−1) than those with garages attached directly to the occupied zone (means from 1 to 65 m3 h−1). These data provide a basis for modeling the contribution of indoor sources to concentrations in occupied zones.  相似文献   

6.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

7.

An updated systematic review was conducted to assessing on the association between indoor air pollution caused by household energy consumption and childhood pneumonia in low- and middle-income countries. We performed a meta-analysis from the electronic databases of PubMed, Cochrane library, Web of Science, EMBASE. Studies were selected when they reported childhood pneumonia or ALRI in relation to indoor air pollution resulted from solid fuel. Studies must provide results on exposure prevalence of children aged below 5 years from Asia or Africa. We devoted ourselves to identifying randomized controlled experiments and observational epidemiological researches, which revealed the relation between household usage of solid fuel and childhood pneumonia. Among 1954 articles, 276 were reviewed thoroughly and 16 conduced to such a meta-analysis. It was found that there is a significant relationship between the solid fuel combustion and increasing risk of childhood pneumonia (OR?=?1.66, 95%CI 1.36–2.02). The summary odds ratios from biomass use and mixed fuel use were, respectively, 1.86 (95%CI 1.15–3.02) and 1.58 (95%CI 1.38–1.81), with substantial between study heterogeneity (I2?=?87.2% and 29.2%, respectively). According to the subgroup analysis along with the meta-regression analysis, the risk of using solid fuel in Asian regions is higher than that in African regions. Studies based on non-hospital participates (I2?=?49.5%) may also a source of heterogeneity. We found that indoor air pollution generated by the usage of solid fuel might be a significant risk factor for pneumonia in children and suggested improving the indoor air quality by promoting cleaner fuel will be important in undeveloped countries.

  相似文献   

8.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

9.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

10.
This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.  相似文献   

11.
In order to predict indoor radiation levels due to radon daughters at low building ventilation and air leakage rates, differential equations governing the decay and venting of radon (Rn-222) and its daughters were used. A computer program based on the equations was written to predict radon and daughter concentrations, total potential alpha energy concentration and equilibrium factor. The program can account for time dependence of ventilation and emanation rates and is readily used by building designers.

Sample calculations using the program showed that potential alpha energy levels in tightened buildings can commonly reach about 0.01 working level (WL), a level more than twice as high as concentrations currently found in most houses.  相似文献   

12.
The effect of indoor exposure to nitrogen dioxide, ammonia, particulate matter and parental tobacco smoke on respiratory health was studied over a period of six months in all second graders born and living in two area of continental Croatia 8–10 yr of age. The study group was divided into two sections corresponding to area of residence (industrial/rural). Information on respiratory symptoms was collected from a self-administered questionnaire completed by the parents of the children. The mean values of concentrations of indoor air pollution that had been recorded in 24-h samples of air collected at schools were mostly below threshold limit for ambient pollution. In addition, information on parental smoking, the density of habitation and the type of fuel used for heating and/or cooking in the home was obtained by a questionnaire. In the investigated period the prevalence of respiratory illness was 22% in the children exposed to lower indoor air pollution and 25% in those exposed to higher indoor air pollution. Exposure to parental smoking was also associated with more respiratory symptoms (28 : 19%). The results indicate that the measured air pollutants only had a slight effect on the respiratory health of preadolescent children. However, the effect of exposure to parental smoking was more pronounced.  相似文献   

13.
The emission of di-(2-ethylhexyl)phthalate (DEHP) from one type of vinyl flooring with ~15% (w/w) DEHP as plasticizer was measured at 22 °C in five FLECs + one blank FLEC (Field and Laboratory Emission Cell). Initially, the flow through all FLECs was 450 ml min?1. After 689 days the flows were changed to 1000 ml min?1, 1600 ml min?1, 2300 ml min?1, and 3000 ml min?1, respectively, in four FLECs, and kept at 450 ml min?1 in one FLEC. Air samples were collected from the effluent air at regular intervals. After 1190 days the experiments were terminated and the interior surfaces of all six FLECs were rinsed with methanol to estimate the internal surface concentrations of DEHP. The DEHP air concentration and specific emission rate (SER) at steady state was estimated for the five different flow rates. The steady-state concentrations decreased slightly with increasing air flow with only the two highest flow rates resulting in significantly lower concentrations. In contrast, the SERs increased significantly. Despite large variation, the internal surface concentrations appeared to decrease slightly with increasing FLEC flow. Computational fluid dynamic (CFD) simulations suggest that the interior gas and surface concentrations were roughly uniform for the low flow case (450 ml min?1), under which, the partitioning between the FLEC internal surface and chamber air was examined. Although paired t-tests showed no difference between CFD and experimental results for DEHP air concentrations and SERs at steady-state conditions, CFD indicated that the experimental DEHP surface concentrations in the FLECs were underestimated. In conclusion, the experiments showed that the emission of DEHP from vinyl flooring is subject to “external” control and that the SER is strongly and positively dependent on the air exchange rate. However, the increased SER almost compensates for the decrease in gas-phase concentration caused by the increased air exchange.  相似文献   

14.
Javed MT  Nimmo W  Gibbs BM 《Chemosphere》2008,70(6):1059-1067
An experimental and modeling investigation has been performed to study the effect of process additives, H2 and CO on NO(x) removal from flue gases by a selective non-catalytic reduction process using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of propane in air at 3% excess oxygen and the desired levels of initial NO(x) (500ppm) were achieved by doping the flame with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 850 to 1200 degrees C for investigation of the effects of the process additives on the performance of aqueous urea DeNO(x). Subsequently, computational kinetic modeling with SENKIN code was performed to analyze the performance of urea providing a direct comparison of modeling prediction with experimental measurements. With CO addition, a downwards shift of 215 degrees C in the peak reduction temperature from 1125 to 910 degrees C was observed during the experimentation while the kinetic modeling suggests it to be 150 degrees C, i.e. from 1020 to 870 degrees C. The addition of H2 impairs the peak NO(x) reduction but suggests a low temperature application of the process. A downward shift of 250 degrees C in the peak reduction temperature, from 1020 to 770 degrees C, was observed during kinetic modeling studies. The kinetic modeling shows a good qualitative agreement with the experimental observations and reveals additional information about the process.  相似文献   

15.
Ambient air quality was monitored and analyzed to develop air quality index and its implications for livability and climate change in Dire Dawa, Ethiopia. Using survey research design, 16 georeferenced locations, representing different land uses, were randomly selected and assessed for sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO),volatile organic compounds (VOCs), and meteorological parameters (temperature and relative humidity). The study found mean concentrations across all land uses for SO2 of 0.37 ± 0.08 ppm, NO2 of 0.13 ± 0.17 ppm, CO2 of 465.65 ± 28.63 ppm, CO of 3.35 ± 2.04 ppm, and VOCs of 1850.67 ± 402 ppm. An air quality index indicated that ambient air quality for SO2 was very poor, NO2 ranged from moderate to very poor, whereas CO rating was moderate. Significant positive correlations existed between temperature and NO2, CO2, and CO and between humidity and VOCs. Significant relationships were also recorded between CO2 and NO2 and between CO and CO2. Poor urban planning, inadequate pollution control measure, and weak capacity to monitor air quality have implications for energy usage, air quality, and local meteorological parameters, with subsequent feedback into global climate change. Implementation of programs to monitor and control emissions in order to reduce air pollution will provide health, economic, and environmental benefits to the city.

Implications: The need to develop and implement emission control programs to reduce air pollution in Dire Dawa City is urgent. This will provide enormous economic, health, and environmental benefits. It is expected that economic effects of air quality improvement will offset the expenditures for pollution control. Also, strategies that focus on air quality and climate change present a unique opportunity to engage different stakeholders in providing inclusive and sustainable development agenda for Dire Dawa.  相似文献   


16.

Indoor air pollutants comprise both polar and non-polar volatile organic compounds (VOCs). Indoor potted plants are well known for their innate ability to improve indoor air quality (IAQ) by detoxification of indoor air pollutants. In this study, a combination of two different plant species comprising a C3 plant (Zamioculcas zamiifolia) and a crassulacean acid metabolism (CAM) plant (Sansevieria trifasciata) was used to remove polar and non-polar VOCs and minimize CO2 emission from the chamber. Z. zamiifolia and S. trifasciata, when combined, were able to remove more than 95% of pollutants within 48 h and could do so for six consecutive pollutant’s exposure cycles. The CO2 concentration was reduced from 410 down to 160 ppm inside the chamber. Our results showed that using plant growth medium rather than soil had a positive effect on decreasing CO2. We also re-affirmed the role of formaldehyde dehydrogenase in the detoxification and metabolism of formaldehyde and that exposure of plants to pollutants enhances the activity of this enzyme in the shoots of both Z. zamiifolia and S. trifasciata. Overall, a mixed plant of Z. zamiifolia and S. trifasciata was more efficient at removing mixed pollutants and reducing CO2 than individual plants.

  相似文献   

17.
A personal air quality model (PAQM) has been developed to estimate the effect of being indoors on total personal exposure to outdoor-generated air pollution. Designed to improve air toxics risk assessment, PAQM accounts for individual hourly activity patterns, indoor-outdoor differences, physical exercise level, and geographic location for up to 56 different population groups. Unique hourly activity profiles are specified for each population group; group members are assigned each hour to one of up to 10 different indoor and outdoor microenvironments. To illustrate PAQM use, we apply it to two example cases: a long-term example representative of situations where pollutant health impact is related to integrated exposure (as in the case of potentially carcinogenic air toxics) and a short-term example representative of situations where health impact is related to acute exposure to peak concentrations (as with ozone).

Case study results illustrate that personal exposure, and thus health risk, attributable to outdoor-generated air pollution is sensitive to indoor-outdoor differences and population mobility. Where health impact is related to long-term integrated exposure (e.g., air toxics), exposure and subsequent risk are likely to be lower than that estimated by previous modeling techniques which do not account for such effects.  相似文献   

18.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

19.
室内空气污染严重影响公众健康 ,已经受到广泛关注。本文分析了我国室内空气污染的现状和成因 ,并从法规建设、监督管理、科学研究和宣传教育等方面介绍了我国控制室内空气污染的对策措施  相似文献   

20.
Abstract

Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 μm) caused by (1) diurnal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables.

Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 μm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 μm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 μm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 μm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (<0.1 μm) but diverged increasingly for larger particles (up to 0.445 μm).

Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 um in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at ~10 nm (possibly smaller), a shallow minimum at ~14 nm, and a second broad peak at ~68 nm. The volume distribution was also bimodal, with a broad peak at ~200 nm, a minimum at ~1.2 μm, and then an upward slope again through the remaining size fractions.

A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [>0.8 air changes per hour (hr?1)], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号