首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为获得生物焦对汞的吸附特性,对不同制备条件下的生物焦进行研究。通过分析生物质种类、制备粒径、制备温度以及制备氧浓度对生物焦吸附汞的影响,并结合其吸附动力学过程,进一步探究吸附机理。结果表明:不同制备条件下生物焦汞吸附特性存在差异;生物焦对汞的物理吸附中,孔隙结构对其具有影响,累积孔体积越大,单位汞吸附量越高,利于生物焦对汞的吸附;与比表面积相比,比孔容积在汞吸附过程中发挥更为重要的作用;化学吸附与物理吸附均在生物焦汞吸附过程中起到重要影响,且化学吸附是其主要的控速步骤。  相似文献   

2.
Measuring carbon in forests: current status and future challenges   总被引:30,自引:0,他引:30  
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.  相似文献   

3.
To use the results of kinetic tests to predict effluent concentrations of specific contaminants in activated sludge systems, the fraction of the biomass that has an ability to degrade the test compound (i.e., competent biomass) must be estimated. A calibration procedure was developed to assess the competent biomass concentration because the chemical oxygen demand (COD) fraction tended to underestimate the degrading fraction for three of the four test compounds. Acetone, for instance, had a measured influent COD fraction of 0.08%, and the actual competent fraction was estimated to be 2.3%, based on the model calibration. Once the competent biomass fraction in the mixed liquor was determined, the extant kinetic parameters were subsequently used to predict activated sludge system performance. Predicted effluent concentrations were within 2, 5, and 16% of the average measured concentrations for acetone, linear alkylbenzene sulfonate, and furfural, respectively. Day-to-day predictions for these compounds were less accurate, possibly because of the non-steady-state nature of the activated sludge systems studied. The difference between the fraction of the influent COD contributed by the target compounds and the competent biomass fraction in the mixed liquor was found to be more significant when the target compound contributed less than 1% of the influent organic matter. The chemical structure of the target compound and chemical composition of the influent likely had an effect on the resulting competent biomass concentration. The total maximum growth rate, microX, was observed to be independent of the influent concentration of acetone and furfural, thus suggesting that the competent biomass concentration for these compounds was not affected by the changes in their influent concentrations. Consequently, a majority of competent biomass growth resulted from the degradation of other substrates, resulting in a competent biomass concentration significantly higher than predicted based on the influent COD fraction contributed by the test compound.  相似文献   

4.
臭氧对活性污泥特性影响研究   总被引:3,自引:0,他引:3  
探讨了臭氧对于污水生物处理中活性污泥特性的影响。结果显示 ,随着臭氧化的进行 ,促进了活性污泥生物量的减少 ,并有一定量的生物污泥被无机化 ,并且污泥的活性和存活性降低了。其中臭氧投加量低于 0 .1gO3 /gSS时污泥活性即大幅下降 ,而后污泥浓度才随着臭氧量的增加而显著降低。  相似文献   

5.
Gong R  Ding Y  Liu H  Chen Q  Liu Z 《Chemosphere》2005,58(1):125-130
In order to search for locally available and untried biomaterials in China with high removal capacity of heavy metals from wastewater, the feasibility of Spirulina maxima as biosorbent for lead removal and recovery from aqueous solution was investigated. The lead biosorption was studied by using intact biomass and pretreated biomass of S. maxima. The effects of operational conditions (e.g. pH, contact time, biomass concentration etc.) on lead biosorption were investigated. The biosorption was solution pH dependent and the maximum adsorption was obtained at a solution pH of about 5.5. The adsorption equilibrium was reached in 60 min. The biosorption followed the Freundlich isotherm model. The maximum removal ratios of lead were about 84% in intact biomass and 92% in pretreated biomass. The lead adsorbed could be desorbed effectively by 0.1 M nitric acid, EDTA and hydrochloric acid. The results in this study indicated that pretreated biomass of S. maxima was a promising candidate for removing lead from wastewater.  相似文献   

6.
To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30–50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30–50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.  相似文献   

7.
Song HP  Li XG  Sun JS  Xu SM  Han X 《Chemosphere》2008,72(4):616-621
In this study, the feasibility of applying a magnetotactic bacterial isolate (MTB), Stenotrophomonas sp. to the removal of Au(III) was investigated. Biosorption experiments showed that Au(III) biosorption capacity exhibited no significant difference in the initial pH range of 1.0-5.5, while decreased more significantly in the initial pH range of 5.5-13.0. Langmuir isotherm indicated that the maximum Au(III) biosorption capacity of Stenotrophomonas sp. were 506, 369 and 308 mg g(-1) dry weight biomass at the initial pH values of 2.0, 7.0 and 12.0, respectively. Thiourea was proved to be an effective desorbent to recover Au from the MTB biomass and 91% Au adsorbed on the biomass could be recovered at equilibrium when the thiourea concentration was 0.8M. The magnetic separator developed by our research team used for separating Au loaded MTB biomass showed high separation efficiency, with 100% biomass removed at the magnetic intensity of 1200 Gs in 180 min. The analyses from FTIR and XRD further confirmed that the reduction of Au(III) to Au(0) by the reductants on the MTB biomass occurred, and the deposition of nano-crystal Au(0) particles, ranging from 24.7 to 31.4 nm, could be estimated on the biomass surface.  相似文献   

8.
The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0–16.8% and 4.0–19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.  相似文献   

9.
In this paper, we investigate the effect of different biomass pretreatments on metal ion uptake by various biosorbents. Heat-treated as well as caustic-treated and ground biomass of Saccharomyces pastorianus was used to remove copper, lead and cadmium from various solutions. Untreated yeast was used as the control sample. The effect of yeast modification on sorption capacity depended on the different types of heavy metal ions and whether they were in single- or multi-component solutions. The highest uptake of copper and lead from a single-metal solution was obtained from heat-treated cells. Ground biomass was the most efficient at cadmium removal. However, the sorption capacity of the modified biomass did not improve when metal ions were removed from multi-component solutions. Indeed, the results in this paper show that optimizing metal removal from single-cation solutions can lead to decreased sorption capacity in multi-component solutions. Therefore, while adjusting the procedure of biomass modification, not only the nature of the metal ion being sorbed but also the chemical composition of the metal ion solution should be taken into account.  相似文献   

10.
The important role of earthworms in the biomagnification of heavy metals in terrestrial ecosystems is widely recognised. Differences in earthworm biomass between sites is mostly not accounted for in ecological risk assessment. These differences may be large depending on soil properties and pollution status. A survey of earthworm biomass and colonisation rate was carried out on dredged sediment-derived soils (DSDS). Results were compared with observations for the surrounding alluvial plains. Mainly grain size distribution and time since disposal determined earthworm biomass on DSDS, while soil pollution status of the DSDS was of lesser importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least 40 years ago.  相似文献   

11.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

12.

Heavy metals in higher concentrations are often encountered in domestic sewage of developing and under-developed countries. High metallic concentrations can stress reactor sludge biomass morphology impeding its performance in organics reduction. However, the extent of damage and ability of sludge biomass to recover from the metallic stress is not fully understood. Also, there is no protocol to identify and prevent the sludge biomass from metallic stress in fully functional sewage treatment plants (STPs). This study investigates performance, metabolic activity, morphology, and settling characteristics of the sludge biomass under different Co(II) stress conditions. The extent of recovery in biomass, when the supply of Co(II) metal ion was discontinued in the inlet stream, was explored. The study also proposed a protocol based on simple settling characteristics of sludge biomass to get an early indication of metal infiltration to prevent potential damage to the biomass morphology. Four sequencing batch reactors (SBRs) with Co(II) ion concentrations of 0 (designated as RCo0), 5 (RCo5), 25 (RCo25), and 75 mg/L (RCo75) in the feed were operated with a cycle time of 12 h. Reactors were operated for 35 days with Co(II) in the feed (termed as stressed phase operation) followed by 24 days of operation without Co(II) in the feed (termed as recovery phase operation). Results show that COD removal in reactor RCo75 reduced to 48% on the 10th day of stressed phase operation, showing a lag in COD removal due to metallic stress. The activity of biomass in reactors RCo5, RCo25, and RCo75 was reduced by 39%, 45%, and 49%, respectively, in the stressed phase compared to the biomass in control reactor. Recovery in COD removal efficiency and specific biomass activity were observed in all the reactors after the removal of metallic stress. The settleability of sludge biomass in reactors RCo25 and RCo75 was significantly affected. Transformation in the shape of flocs in reactor RCo25 and RCo75 biomasses revealed the prolonged effect of metallic stress, which was observed to be irreversible even during the recovery phase operation.

  相似文献   

13.
The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe3O4 particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g?1 by using the first derivative method. The adsorption capacities (q m) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g?1, respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.  相似文献   

14.
We studied the effects of relatively low levels of O(3) (40-50 ppb) and CO(2)-enrichment (+100 ppm) on a northern European lowland hay meadow during the summers 2002-2004 using open-top chambers (OTCs) and ground-planted mesocosms. Ozone reduced the aboveground biomass of the community (up to 40%), and four out of seven species (Campanula rotundifolia, Fragaria vesca, Trifolium medium, Vicia cracca) showed either significant growth reduction and/or visible injuries under elevated O(3). However, the reductions in aboveground biomass were not reflected as changes in the dominance of different functional groups or in the total community root biomass. Elevated CO(2) did not amend the detrimental effects of O(3) on aboveground biomass. Elevated CO(2) alone had only minor effects. An O(3)-induced reduction in the aboveground biomass and N pool of the community are likely to have important consequences in the nutrient cycling of the ecosystem.  相似文献   

15.
Kim D  Sorial GA 《Chemosphere》2007,66(9):1758-1764
The effects of temporal and spatial changes in biological activity and biomass amount on biofilter performance were investigated in a lab-scale trickle-bed air biofilter at a toluene loading of 46.9gm(-3)h(-1) under two different experimental strategies, namely, periodic backwashing at a rate of 1h once a week and 2d starvation. Analysis of the overall reaction for toluene metabolism revealed that cell synthesis was relatively favored over toluene oxidation in the inlet section of the biofilter, but over time its oxidation became favored throughout the biofilter bed. Periodic in situ backwashing with media fluidization effectively made even spatial distribution of biomass along the bed media, by which consistent high removal performance in the biofilter has been attained. After 2d starvation, the ratio of the biofilm EPS to the total biomass increased along the media bed depth, while the total biomass in the media bed subsequently decreased. The presence of sufficient biomass and microbial activity favorably influenced biofilter reacclimation after restart-up following starvation.  相似文献   

16.
设计并利用在差压仪中密闭投加基质的实验方法,根据ASM模型中自养菌和硝化过程耗氧速率的关系,对比研究了ECOSUNIDE工艺和其他4个污水处理厂曝气池混合液中自养菌的浓度。研究表明,在不考虑自养菌增长和衰减情况下,ECOSUNIDE工艺混合液自养菌生物浓度为48.15 mg COD/L,该结果显著高于其他受试污水处理厂的混合液自养菌生物浓度(17.2~37.5 mg COD/L),表明ECOSUNIDE工艺在提高活性污泥中自养菌生物浓度上有较强的优势。设计的实验方法可以简便、有效地测定用于ASM模型中的自养菌浓度。  相似文献   

17.
Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.  相似文献   

18.
19.
李俊生 《环境工程学报》2010,4(7):1609-1614
为了研究生物质裂解工艺最佳条件,以木屑为原料,石英砂为热媒,对建立的以旋转锥反应器为主体的生物质快速裂解工艺进行研究,在单因素实验基础上,对4个主要因素(裂解温度、真空度、旋转锥盘转速和木屑粒径)进行正交实验。在木屑含水率为8.2%,热媒量1 200 g,进料速率4 kg/h的条件下,确定了最佳工艺条件为:裂解温度550℃,真空度0.08 MPa,旋转锥盘转速115 r/min,木屑粒径为30目。最佳条件下生物质转化率为54.83%,实验研究表明,自制旋转锥反应器裂解工艺具有可行性。  相似文献   

20.
建立了含有悬浮微生物、电极上生物量、可溶性化学底物和中介体的微生物燃料电池(MFC)数学模型。通过底物降解、生物增长和电流产生过程的模拟,考察了生物量和底物随时间的变化规律,底物质量浓度对生物量、底物降解和电流的影响。结果表明,当溶液中初始微生物量很少时,随着MFC反应的进行,生物主要富集在电极上,溶液中生物生长缓慢;MFC中的生物生长经历延滞期、对数期和平稳期,底物分解经历缓慢、快速和消耗殆尽3个阶段。底物质量浓度小于等于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而缩短。底物质量浓度大于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号