首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The buoyancy of Microcystis colonies determines the occurrence and dominance of bloom on the water surface. Besides the cell density regulation and the formation of larger size aggregates, increases in cell volume per colony (Vcell) and the colony’s compactness (i.e., volume ratio of cells to the colony, VR) may promote Microcystis colony buoyancy. Yet only a few studies have studied the relationship between the internal structure variation of colonies and their buoyancy, and the co-regulatory role of Vcell and VR of Microcystis colonies in the floating velocity (FV) remains largely unexplored. In the present study, we optimized a method for measuring the compactness of Microcystis colonies based on the linear relationship between total Vcell and chlorophyll a. Different relationships between the VRs and FVs were observed with different colony size and Vcell range groups. Both field and laboratory experiments showed that FV/(D50, median diameter)2 had a significant linear relationship with VR, indicating that the cell density and extracellular polysaccharides were unchanged over a short time period and could be estimated via the slope and intercept of a fitted line. We also constructed a functional relationship between FV, VR, and Vcell and found that high VR and Vcell can promote Microcystis buoyancy. This means that increasing cell compactness or Vcell may be an active regulation strategy for Microcystis colonies to promote buoyancy. Therefore, quantifying the internal structure of Microcystis colonies is strongly recommended for the assessment of Microcystis bloom development and their management.

Graphical abstract

  相似文献   

2.
Zhang J  Geng J  Ren H  Luo J  Zhang A  Wang X 《Chemosphere》2011,85(8):1325-1330
Phosphorus (P) is a key biological element and limiting nutrient in aquatic environments. Phosphate (+5) is traditionally associated with the P nutrient supply. However, phosphite (+3) has recently generated a great deal of interest, because of the possibility that it is a P source based on recognition of its vital role in the original life of the early earth. This study investigated whether phosphite can be an alternative P source for Microcystis aeruginosa PCC 7806, one of the predominant bloom species in freshwater systems. The results indicated that M. aeruginosa could not utilize phosphite as a sole P-nutrient directly for cell growth at any concentration, but that phosphite could boost cell numbers and chlorophyll a (Chl-a) content as long as phosphate was provided simultaneously. Specifically, Chl-a production increased sharply when 5.44 mg P L−1 phosphite was added to 0.54 mg P L−1 phosphate medium. Analysis of the maximum yield of PSII indicated that phosphite may stimulate the photosynthesis process of cells in phosphate-phosphite medium. In addition, phosphite failed to support cell growth, even though it more readily permeated the cells in P-deficient medium than in P-sufficient medium. Alkaline phosphatase activity (APA) analysis indicated that, unlike organic P, phosphite inhibits the response of cells to deficient P status, especially under P-deprived conditions.  相似文献   

3.

In freshwater aquaculture ponds, application of algicidal Bacillus is a promising way in the control of cyanobacterial blooms. To best understand Bacillus algicidal characters and mechanisms in the field, different-sized colonial cyanobacteria were isolated from an aquaculture pond, and the effects of B. subtilis on their growth, colony maintenance, and colony-attached bacterial community composition were investigated. The results showed that B. subtilis could inhibit the growth of colonial cyanobacteria. Bigger-sized colonies isolated from the field could spontaneously disintegrate into smaller-sized colonies in the laboratory. Algicidal B. subtilis could accelerate the disintegration of colonies and decrease colony size. B. subtilis not only decreased the colony-attached bacterial community diversity but also changed its composition. B. subtilis increased the relative abundances of some attached bacterial genera, including Pseudomonas, Shewanella, Bacillus, Shinella, Rhizobium, and Ensifer. These bacteria with algicidal, microcystin-degrading, and flocculating activities might be an important contributor to algicidal effects of B. subtilis on colonial cyanobacteria.

  相似文献   

4.

It remains unclear why the area of a cyanobacterial bloom increases in a shallow lake after a typhoon passes. In this study, the mechanisms of cyanobacterial bloom expansion were investigated by studying meteorological factors, water quality, algal biomass, and bloom area in Lake Taihu before and after typhoons (2007–2016). Our results showed that typhoon-induced sediment resuspension caused a short-term increase in nutrients, but nutrients returned to pre-typhoon levels after the typhoon passages. The short-term nutrient release during a typhoon did not result in an obvious increase in Microcystis cell density in two bays of Lake Taihu (Gonghu and Meiliang). Under strong winds, Microcystis aggregates were uniformly distributed in the water column downwind and then dispersed into different directions by wind-driven currents. In particular, Microcystis in the surface water were transported to the center of Lake Taihu. After a typhoon, dispersed Microcystis refloated and formed blooms. Thus, the bloom area was enlarged compared with before a typhoon. Several days after a typhoon, the bloom area gradually reduced as a result of a steady breeze on the horizontal accumulation of Microcystis.

  相似文献   

5.
从肥沃的土壤中经过分离获得14株降解纤维素的细菌,以菌株在纤维素刚果红平板中溶菌圈直径与菌落直径的比值为依据进行筛选,获得一株比值为4.5的菌株,编号为X62。采用DNS法对影响该菌产生纤维素酶活力的单因素进行了分析,并通过对其进行形态特征、生理生化特征测定以及16S rDNA序列分析,确定X62为梭形芽胞杆菌(Lysinibacillus fusiformis),将其命名为Lysinibacillus fusiformis X62。X62的16S rRNA序列GenBank登录号为JX198550。  相似文献   

6.
Lake Erhai is the second largest lake of Southwest China and an important drinking water source. The lake is currently defined as the preliminary stage of eutrophic states, but facing a serious threat with transfer into intensive eutrophication. The present study examined the dynamics of Microcystis blooms and toxic Microcystis in Lake Erhai during 2010, based on quantitative real-time PCR method using 16S rRNA gene specific for Microcystis and microcystin systhesis gene (mcy), and chemical analysis on microcystin (MC) concentrations. Total Microcystis cell abundance at 16 sampling sites were shown as an average of 1.7?×?107 cells l?1 (1.3?×?102–3.8?×?109 cells l?1). Microcystin LR (MC-LR) and microcystin RR (MC-RR) were the main variants. The strong southwesterly winds, anticlockwise circular flows and geographical characteristics of lake and phytoplankton community succession impacted the distribution patterns of Chl a and MC in the lake. The concentration of Chl a and MC and abundances of total Microsytis and MC-producing Microsystis (MCM) were shown to be positively correlated with pH, DO and TP, negatively correlated with SD, NO3-N, TN/Chl a and TN/TP, and not correlated with NH4-N, TN, dissolved total nitrogen (DTN) and water temperatures. When TN/TP decrease, Microcystis tended to dominate and MC concentrations tended to increase, suggesting that the “TN/TP rule” can be partially applied to explain the correlation between the cyanobacterial blooms and nutrients N and P only within a certain nutrient level. It is speculated that N and P nutrients and the associated genes (e.g., mcy) may jointly drive MC concentration and toxigenicity of Microcystis in Lake Erhai.  相似文献   

7.
There is limited knowledge available on metalloid biosorption by freshwater algae. In this study, biosorption properties of anionic Sb(OH) 6 ? by naturally occurring cyanobacteria Microcystis were investigated as a function of initial pH, biosorbent dosage, contact time, and addition sequences of competitive ions, and their binding mechanisms were discussed. The biosorption process was fast and equilibrium was reached at 2 h. Sb(V) biosorption decreased with the increase of pH and the optimum pH range was 2.5–3.0, which corresponded with the changes of surface charges of the cell wall of Microcystis. The biosorption data satisfactorily followed the Freundlich model. The simultaneous addition of H2PO4 ? and Ca2+ enhanced Sb(V) biosorption, while NO3 ? greatly inhibited the biosorption, compared with single Sb(V) addition. The initial addition of the competitive ions reduced Sb(V) biosorption at higher Sb(V) concentrations, compared with simultaneous addition. A fraction of biosorbed Sb(V) was replaced by the competitive ions which were added subsequently, and the exchange only occurred at higher concentrations of Sb(V). 1.0 mol/L HCl demonstrated the highest desorption efficiency. Speciation analyses indicated that no reduction of Sb(V) into Sb(III) occurred. Based on the results of zeta potential and attenuated total reflection infrared spectroscopy spectra, Sb(OH) 6 ? bound to the biomass through electrostatic attraction and surface complexation, and amino, carboxyl, and hydroxyl groups were involved in the biosorption process. The study suggest that Microcystis from cyanobacteria blooms could be used as a potential biosorbent to remove Sb(V) from effluents at environmentally relevant concentrations (≤10.0 mg/L).  相似文献   

8.
《Chemosphere》2010,78(11):1585-1593
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health.  相似文献   

9.

Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d?1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.

  相似文献   

10.
Lürling M 《Chemosphere》2011,82(3):411-417
Active growth is a prerequisite for the formation of grazing-protective, mostly eight-celled colonies by the ubiquitous green alga Scenedesmus in response to chemical cues from zooplankton. Colonies can also be evoked by chemically quite similar manmade anionic surfactants, such as FFD-6. In this study, it was hypothesized that growth-inhibiting concentrations of the herbicide metribuzin impair the ability of Scenedesmus obliquus to form colonies in response to the surfactant morphogen FFD-6. The results confirmed that the formation of colonies in S. obliquus was hampered by metribuzin. EC50 values of metribuzin for colony inhibition (approximately 11 μg L−1) were similar to those for growth and photosynthesis inhibition (12-25 μg metribuzin L−1). In the absence of the colony-inducing surfactant FFD-6, S. obliquus populations were comprised of 92% unicells, having on average 1.2 cells per colony at all tested metribuzin concentrations (0-100 μg L−1). In contrast, in the presence of FFD-6 and at low metribuzin concentrations (0 and 5 μg L−1), S. obliquus had more than five cells per colony with a high portion of eight-celled colonies. However, increasing concentrations of metribuzin decreased the number of colonies in the FFD-6-exposed populations and caused them to remain mostly unicellular at the highest concentrations (50 and 100 μg L−1). This study revealed that metribuzin impeded growth and by doing so, also obstructed the possibility for unicellular Scenedesmus to form colonies. Consequently, an increase in mortality of Scenedesmus from grazing is expected.  相似文献   

11.
To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa - unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mgl(-1) copper sulfate treatment for 24h. Upon exposure to 0.25 mgl(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F(v)/F(m), ETR(max), and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis.  相似文献   

12.
Glyphosate-based herbicides are extensively used in Argentina's agricultural system to control undesirable weeds. This study was conducted to evaluate the culturable mycobiota [colony forming units (CFU) g?1 and frequency of fungal genera or species] from an agricultural field exposed to pesticides. In addition, we evaluated the tolerance of A. oryzae and nontoxigenic A. flavus strains to high concentrations (100 to 500 mM – 17,000 to 84,500 ppm) of a glyphosate commercial formulation. The analysis of the mycobiota showed that the frequency of the main fungal genera varied according to the analyzed sampling period. Aspergillus spp. or Aspergillus section Flavi strains were isolated from 20 to 100% of the soil samples. Sterilia spp. were also observed throughout the sampling (50 to 100%). Aspergillus section Flavi tolerance assays showed that all of the tested strains were able to develop at the highest glyphosate concentration tested regardless of the water availability conditions. In general, significant reductions in growth rates were observed with increasing concentrations of the herbicide. However, a complete inhibition of fungal growth was not observed with the concentrations assayed. This study contributes to the knowledge of culturable mycobiota from agricultural soils exposed to pesticides and provides evidence on the effective growth ability of A. oryzae and nontoxigenic A. flavus strains exposed to high glyphosate concentrations in vitro.  相似文献   

13.

Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb2+ concentration, whereas synergistic effect of pH and initial Pb2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb2+ removal efficiencies and can promote population to remove Pb2+. Besides, the three duckweed strains could be potential candidates for Pb2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.

  相似文献   

14.

Polychlorinated biphenyls (PCBs) contaminate 19% of US Superfund sites and represent a serious risk to human and environmental health. One promising strategy to remediate PCB-contaminated sediments utilizes organohalide-respiring bacteria (OHRB) that dechlorinate PCBs.

However, functional genes that act as biomarkers for PCB dechlorination processes (i.e., reductive dehalogenase genes) are poorly understood. Here, we developed anaerobic sediment microcosms that harbor an OHRB community dominated by the genus Dehalococcoides. During the 430-day microcosm incubation, Dehalococcoides 16S rRNA sequences increased two orders of magnitude to 107 copies/g of sediment, and at the same time, PCB118 decreased by as much as 70%. In addition, the OHRB community dechlorinated a range of penta- and tetra-chlorinated PCB congeners including PCBs 66, 70?+?74?+?76, 95, 90?+?101, and PCB110 without exogenous electron donor. We quantified candidate reductive dehalogenase (RDase) genes over a 430-day incubation period and found rd14, a reductive dehalogenase that belongs to Dehalococcoides mccartyi strain CG5, was enriched to 107 copies/g of sediment. At the same time, pcbA5 was enriched to only 105 copies/g of sediment. A survey for additional RDase genes revealed sequences similar to strain CG5’s rd4 and rd8. In addition to demonstrating the PCB dechlorination potential of native microbial communities in contaminated freshwater sediments, our results suggest candidate functional genes with previously unexplored potential could serve as biomarkers of PCB dechlorination processes.

  相似文献   

15.
This study aimed to evaluate the aquatic toxicity of three typical tetracycline antibiotics, including tetracycline, oxytetracycline, and chlortetracycline, on the cyanobacterium Microcystis aeruginosa. The cell density, chlorophyll a content, protein content, and enzymatic antioxidant activities were determined. The results showed that the cell growth was significantly inhibited by the three compounds at a low concentration. The chlorophyll a and protein content decreased significantly after exposure to 0.05 mg L?1 of each compound for 9 d. When exposed to 0.2–1 mg L?1 of tetracycline, the superoxide dismutase (SOD) activity increased, but peroxidase (POD) and catalase (CAT) activities decreased. In contrast, when exposed to oxytetracycline and chlortetracycline at different concentrations ranging from 0.2 to 1 mg L?1 and from 0.01 to 0.05 mg L?1, the SOD activity decreased, but the POD and CAT activities increased. These findings indicate that tetracycline antibiotics influence cell growth and protein synthesis, and they also induce oxidative stress in M. aeruginosa at environmentally similar concentrations. Thus, this study may provide further insights into the toxic effects of tetracycline antibiotics and the controlled use of antibiotics.  相似文献   

16.
用低浓度SO2诱导驯化方法获得高效脱硫菌群,并用分离培养与16S rRNA基因测序技术相结合的方法鉴定菌群种属,分析驯化过程中种群结构的动态变化,同时研究分离纯菌种的脱硫性能。结果表明,从诱导驯化7 d和14 d菌液中分别分离出23株菌和22株菌,16S rRNA序列分析发现这些菌归属于13个种,其中有6个种(Rhodococcus erythropolis、Pseudomonas putida、Microbacterium oxydans、Sphingomonas koreensis、Acinetobacter junii、Acinetobacter johnsonii)对SO2-3有较强的降解能力,并在持续驯化过程中稳定的生长传代,降解产物以硫酸根为主,还有极少量的单质硫。与含混合菌的驯化菌液降解SO2-3的能力相比,单一脱硫菌的脱硫性能较弱。脱硫功能菌株及其基本特性的研究为微生物处理SO2烟气提供了丰富的菌源信息和理论基础。  相似文献   

17.

The extensive application of cerium oxide nanoparticles (CeO2 NPs), a type of rare earth nanomaterial, led to pollution into aquatic environments. Cyanobacteria, a significant component of freshwater ecosystems, can interact with CeO2 NPs. However, little attention has been paid as to whether CeO2 NPs will have adverse effects on cyanobacteria. In the present study, Microcystis aeruginosa (FACHB-942) was exposed to different concentrations (0, 1, 10, and 50 mg/L) of CeO2 NPs. Results showed 50 mg/L CeO2 NPs inhibited algal growth (11.48%?±?5.76%), suppressed photosynthesis and induced the generation of reactive oxygen species (ROS) after 72 h exposure. The toxicity mechanism is the adsorption of CeO2 NPs on cell surface, the ROS formation and the intracellular Ce. Additionally, the intracellular microcystins (MCs) content was significantly induced (11.84%?±?1.47%) by 50 mg/L CeO2 NPs, while no significance was found in 1 and 10 mg/L CeO2 NP treatments. Results indicated high concentrations of CeO2 NPs could be toxic to algae through the adverse effects on algal growth and photosynthesis. Moreover, the promoted MCs production could also pose a threat to freshwater ecosystems due to the possible release into the environment.

  相似文献   

18.

The ubiquitous β-Proteobacterium Gallionella ferruginea is known as stalk-forming, microaerophilic iron(II) oxidizer, which rapidly produces iron oxyhydroxide precipitates. Uranium and neptunium sorption on the resulting intermixes of G. ferruginea cells, stalks, extracellular exudates, and precipitated iron oxyhydroxides (BIOS) was compared to sorption to abiotically formed iron oxides and oxyhydroxides. The results show a high sorption capacity of BIOS towards radionuclides at circumneutral pH values with an apparent bulk distribution coefficient (Kd) of 1.23 × 104 L kg?1 for uranium and 3.07 × 105 L kg?1 for neptunium. The spectroscopic approach by X-ray absorption spectroscopy (XAS) and ATR FT-IR spectroscopy, which was applied on BIOS samples, showed the formation of inner-sphere complexes. The structural data obtained at the uranium LIII-edge and the neptunium LIII-edge indicate the formation of bidentate edge-sharing surface complexes, which are known as the main sorption species on abiotic ferrihydrite. Since the rate of iron precipitation in G. ferruginea-dominated systems is 60 times faster than in abiotic systems, more ferrihydrite will be available for immobilization processes of heavy metals and radionuclides in contaminated environments and even in the far-field of high-level nuclear waste repositories.

  相似文献   

19.
ABSTRACT

Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m?3. Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.
IMPLICATIONS Indoor temperature, humidity, ventilation, accumulation of biological pollutants, and potential infection problems will seriously affect the indoor environments. Studying these factors is important to indoor environmental sanitation and air quality improvements. Results of using real-time PCR to evaluate the bacterial pathogens of nosocomial infection for a nursing care institution in Taiwan reveal that the main bacteria species existing in the indoor air is E. coli.  相似文献   

20.

The present study validates the oil-based paint bioremediation potential of Bacillus subtilis NAP1 for ecotoxicological assessment using a three-dimensional multi-species bio-testing model. The model included bioassays to determine phytotoxic effect, cytotoxic effect, and antimicrobial effect of oil-based paint. Additionally, the antioxidant activity of pre- and post-bioremediation samples was also detected to confirm its detoxification. Although, the pre-bioremediation samples of oil-based paint displayed significant toxicity against all the life forms. However, post-bioremediation, the cytotoxic effect against Artemia salina revealed substantial detoxification of oil-based paint with LD50 of 121 μl ml?1 (without glucose) and >?400 μl ml?1 (with glucose). Similarly, the reduction in toxicity against Raphanus raphanistrum seeds germination (%FG?=?98 to 100%) was also evident of successful detoxification under experimental conditions. Moreover, the toxicity against test bacterial strains and fungal strains was completely removed after bioremediation. In addition, the post-bioremediation samples showed reduced antioxidant activities (% scavenging?=?23.5?±?0.35 and 28.9?±?2.7) without and with glucose, respectively. Convincingly, the present multi-species bio-testing model in addition to antioxidant studies could be suggested as a validation tool for bioremediation experiments, especially for middle and low-income countries.

?

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号