首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Decolorization of synthetic dyes using a copper complex with glucaric acid   总被引:1,自引:0,他引:1  
Selected azo, acridine, triphenyl methane, anthraquinone and thiazine-based dyes were decolorized using a catalytic system consisting of Cu(II)/glucaric acid/H(2)O(2). More than 90% decolorization was obtained with 100 ppm Acridine Orange, Azure B, Chicago Sky Blue, Crystal Violet, Methyl Orange, Poly B-411, Reactive Black 5, Reactive Blue 2, and Remazol Brilliant Blue R within 24 h. Seventy to eighty percent decolorization was achieved within the first 6 h. The decolorizaton was not affected by pH. The involvement of hydroxyl radicals produced in the system in the decolorization of the dye molecules was confirmed by electron spin resonance study.  相似文献   

2.
A decolorizing fungal strain was isolated and identified by the morphology and genotypic characterization as Aspergillus proliferans. The effect of A. proliferans on decolorization of synthetic dyes (70 mg ml(-1)) and colored effluent was evaluated in liquid culture medium. A. proliferans expressed their effective decolorization activity in effectual decolorization of synthetic dyes and industrial effluent. Synthetic dyes were decolorized by 76 to 89% within 6 days of treatment and 73.5% of color was removed in industrial effluent within 8 days. The addition of optimum carbon and nitrogen sources were effectively stimulated the decolorization activity. The high concentration of glucose repressed the decolorization activity and supplementation of yeast extract has significantly enhanced the effluent decolorization at p < 0.05. Laccase enzyme was isolated from liquid state fermentation, which showed significant enzyme activity (10,200 Uml(-1)) at p < 0.005. The crude enzyme decolorizes the dyes aniline blue and congo red in 14 hours (40.9 to 70%) and the effluent in 14 hours (88.6%). Moreover, the culture free supernatant without the fungal biomass has also effectively decolorized the effluent and synthetic dyes. The fungi Aspergillus proliferans was used not only for decolorization but also for better bioremediation of industrial effluent.  相似文献   

3.
Degradation of dyes from aqueous solution by Fenton processes: a review   总被引:2,自引:0,他引:2  
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as “Fenton circle”. This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.  相似文献   

4.
Heilier JF  Donnez J  Lison D 《Chemosphere》2008,71(2):203-210
Organochlorines (polychlorinated biphenyls and dioxin-like compounds) are suspected to play a role in the etiopathogenesis of endometriosis. This hypothesis, based on experimental data, has been circulating for years in the scientific community and several epidemiologic surveys have attempted to obtain confirmatory human data. The purpose of this mini-review is to provide an overview of the twelve epidemiological studies that have assessed the relationship between endometriosis and organochlorine exposure. Several studies did not observe a significant association between peritoneal endometriosis and organochlorines. The deep nodular form of endometriosis appears associated with a higher serum level of both dioxin-like compounds and polychlorobiphenyls. The type of control women, the nature of the chemicals measured, and the definition of the disease could modulate the ability to detect the possible relationship between endometriosis and organochlorine exposure.  相似文献   

5.
Copper-ligand complex for the decolorization of synthetic dyes   总被引:1,自引:0,他引:1  
Verma P  Baldrian P  Gabriel J  Trnka T  Nerud F 《Chemosphere》2004,57(9):1207-1211
The reaction system containing Cu(II), hydrogen peroxide and D-arabinono-1,4-lactone was found to be effective in the decolorization and reduction of toxicity of azo, thiazine-, triphenylmethane- and anthraquinone-based synthetic dyes. More than 85% decolorization was obtained with 100ppm Acridine Orange, Azure B, Chicago Sky Blue 6B, Crystal Violet, Evans Blue, Poly B-411, Reactive Blue 2, Reactive Blue 5, and Remazol Brilliant Blue R incubated for 24h in the presence of 10mM CuSO(4), 20mM D-arabinono-1,4-lactone and 80 mM H(2)O(2). The rate of decolorization was not affected by pH in the range of 3-9. The rapid decolorization was accompanied by a fast decomposition of H(2)O(2) in the reaction mixture and by a fast production of hydroxyl radicals.  相似文献   

6.
In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm?2) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90 % was removed. In the case of COD removal, the application of a current density greater than 40 mA cm?2 favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. Figure
Chemical structures of a NY and b RR  相似文献   

7.
Verma P  Baldrian P  Nerud F 《Chemosphere》2003,50(8):975-979
The cobalt(II)/ascorbic acid/hydrogen peroxide system was used for decolorization of azo, acridine, anthraquinone, thiazine and triphenylmethane dyes. More than 90% decolorization was obtained with all dyes except Remazol Brilliant Blue R (75%). With other transition metals the system was less efficient. With copper, higher concentration and prolonged incubation time was necessary to obtain the same extent of decolorization. The rate of decolorizaton was not affected by pH in the range of 3-9. The reaction is very fast, with more than 90% decolorization being attained within 15 min. The system produces hydroxyl radicals which are responsible for the decolorization.  相似文献   

8.
Degradation of dyes in aqueous solutions by the Fenton process   总被引:3,自引:0,他引:3  
Xu XR  Li HB  Wang WH  Gu JD 《Chemosphere》2004,57(7):595-600
Degradation of 20 different dyes in aqueous solutions by the Fenton process was performed. These dyes include 6 types: acidic, reactive, direct, cationic, disperse and vat dyes. The former four types of dyes were decolorized and their TOC values were decreased greatly, while the color and TOC removals of the latter two types were lower. The catalytic activities of four metal ions on the degradation efficiencies of Vat Blue BO, which was chosen as a model dye because of its lowest color and TOC removals, were compared in the dark and under the ultraviolet light irradiation. The catalytic ability of different metals was Fe2+>Cu2+>Mn2+>Ag+ in the dark, and the same sequence was obtained under irradiation condition with greater degradation efficiency. Furthermore, the efficiencies of three oxidation processes, including H2O2/UV, Fe2+/H2O2 and Fe2+/H2O2/UV were compared. The results showed that the oxidation by Fe2+/H2O2/UV was the strongest, and even greater than the arithmetic sum of the other two processes, which suggests the synergistic effect of ultraviolet and ferrous ions on the degradation reaction.  相似文献   

9.
Couto SR  Rosales E  Sanromán MA 《Chemosphere》2006,62(9):1558-1563
The present paper studies the decolourization of different synthetic dyes (Indigo Carmine, Bromophenol Blue, Methyl Orange and Poly R-478) by the white-rot fungus Trametes hirsuta at bioreactor scale under solid-state conditions, operating with ground orange peelings as a support-substrate. Dye decolourization was performed in both batch and continuous mode. Batch cultivation led to high decolourization percentages in a short time (100% for Indigo Carmine in 3h and 85% for Bromophenol Blue in 7 h). As for continuous cultivation, different hydraulic retention times (HRT) were studied (0.8, 1, 1.5 and 3d). The highest decolourization percentages were obtained operating at a HRT of 3d, especially for the dyes Methyl Orange and Poly R-478 (81.4% and 46.9%, respectively). This is a very interesting result, since there are few studies dealing with the continuous decolourization of dyes at bioreactor scale by fungal laccases.  相似文献   

10.
Basic yellow 28 (SLY) and Reactive black 5 (CBWB), which are respectively methine and sulfoazo textile dyes were individually exposed to electrochemical treatment using diamond-, aluminium-, copper- and iron-zinc alloy electrodes. The generated current was registered with time during electrolysis of the dye solutions and the color variation and the formation of degradation products were followed using HPLC with diode array detection. Four different electrodic materials were tested by applying different potentials in the range -1.0 to -2.5 V and presented 95% color removal and COD removal of up to 65-67% in the case of CBWB dye solution treated with the copper and iron electrodes. Efficiency was enhanced with stirring and flow in relation to the stationary regime. The kinetic parameter reaction rate was used to establish the effect of flow, potential, electrode nature and pH. The formation and characterization of the precipitate formed under certain conditions is reported and discussed.  相似文献   

11.
Environmental Science and Pollution Research - Globally, organic dyes are major constituents in wastewater effluents due to their large-scale industrial applications. These persistent pollutants...  相似文献   

12.
Although aldehydes contribute to ozone and particulate matter formation, there has been little research on the biofiltration of these volatile organic compounds (VOCs), especially as mixtures. Biofiltration degradation kinetics of an aldehyde mixture containing hexanal, 2-methylbutanal (2-MB), and 3-methylbutanal (3-MB) was investigated using a bench-scale, synthetic, media-based biofilter. The adsorption capacity of the synthetic media for a model VOC, 3-methylbutanal, was 10 times that of compost. Periodic residence time distribution analysis (over the course of 1 yr) via a tracer study (84-99% recovery), indicated plug flow without channeling in the synthetic media and lack of compaction in the reactor. Simple first-order and zero-order kinetic models both equally fit the experimental data, yet analysis of the measured rate constants versus fractional conversion suggested an overall first-order model was more appropriate. Kinetic analysis indicated that hexanal had a significantly higher reaction rate (k = 0.09 +/- 0.005 1/sec; 23 +/- 1.3 ppmv) compared with the branched aldehydes (k = 0.04 +/- 0.0036 1/sec; 31 +/- 1.6 ppmv for 2-MB and 0.03 +/- 0.0051 1/sec; 22 +/- 1.3 ppmv for 3-MB). After 3 months of operation, all three compounds reached 100% removal (50 sec residence time, 18-46 ppmv inlet). Media samples withdrawn from the biofilter and observed under scanning electron microscopy analysis indicated microbial growth, suggesting removal of the aldehydes could be attributed to biodegradation.  相似文献   

13.
Dyestuff production units and dyeing units have always had pressing need techniques that allow economical pre-treatment for colour in the effluent. The effectiveness of adsorption for dye removal from wastewaters has made it an ideal alternative to other expensive treatment options. Removal of acid green25 and acid red 183 from aqueous solution by different adsorbent such as shells of almond and hazelnut, and poplar and walnut sawdust were investigated. Equilibrium isotherms have been determined and analysed using the Freundlich equations. Parameters of Freundlich isotherm have been determined using adsorption data. Capacities of adsorbent follow as walnut > poplar > almond > hazelnut for AG25 and almond > walnut > poplar > hazelnut for AR183, respectively.  相似文献   

14.
Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate   总被引:32,自引:0,他引:32  
Alam MG  Tokunaga S  Maekawa T 《Chemosphere》2001,43(8):1035-1041
An environment-friendly and cost-effective extraction method has been studied for the removal of arsenic from contaminated soil. A yellow-brown forest soil was contaminated with arsenic(V) and used as a model soil. Among various potassium and sodium salts, potassium phosphate was most effective in extracting arsenic, attaining more than 40% extraction in the pH range of 6–8 with minimum damage to the soil properties. Exchange mechanism is proposed for the extraction of arsenic from soil by phosphate. Sequential extraction shows that phosphate is effective in extracting arsenic of Al- and Fe-bound forms. Arsenic of residual form was not extracted. Arsenic was efficiently extracted by phosphate solution of pH 6.0 at 300 mM phosphate concentration and at 40°C.  相似文献   

15.
A novel method for the extraction of Sudan dyes including Sudan I, II, III, and IV from environmental water by magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) coated with sodium dodecylsulfate (SDS) as adsorbent was reported. Fe3O4@TiO2 was synthesized by a simple method and was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometer. The magnetic separation was quite efficient for the adsorption and desorption of Sudan dyes. The effect of the amount of SDS, extraction time, pH, desorption condition, maximal extraction volume, and humic acid on the extraction process were investigated. This method was employed to analyze three environmental water samples. The results demonstrated that our proposed method had wide linear range (25–5,000 ng L?1) with a good linearity (R 2?>?0.999) and low detection limits (2.9–7.3 ng L?1). An enrichment factor of 1,000 was achieved. In all three spiked levels (25, 250, and 2,500 ng L?1), the recoveries of Sudan dyes were in the range of 86.9–93.6 %. The relative standard deviations obtained were ranging from 2.5 to 9.3 %. That is to say, the new method was fast and effective for the extraction of Sudan dye from environmental water.  相似文献   

16.
Environmental Science and Pollution Research - The rapid economic development in China places a large demand for energy, and as a result, thermal power plants in China are producing an enormous...  相似文献   

17.
Kale SP  Murthy NB  Raghu K 《Chemosphere》2001,44(4):893-895
14C-carbofuran underwent considerable mineralization (approximately 30% of the applied activity) in Vertisol soil under moist and flooded conditions during 60 days incubation. Bound residues were formed under both the conditions, the extent being more in moist soils (approximately 55% of the applied activity) than under flooded conditions (approximately 41% of the applied activity). 3-Keto carbofuran was the only significant metabolite observed under flooded conditions.  相似文献   

18.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   

19.
Degradation of calcium lignosulfonate using gamma-ray irradiation   总被引:2,自引:0,他引:2  
Zhang SJ  Yu HQ  Wu LX 《Chemosphere》2004,57(9):1181-1187
Gamma-ray irradiation was proven to be a promising means for the removal of calcium lignosulfonate (CaLS). At a dose rate of 55Gy min(-1), over 90% of CaLS was mineralized to CO(2), H(2)O and sulfates within 3-d irradiation. The degradation of CaLS with the initial CaLS concentrations ranging from 40 to 200mg l(-1) followed zero-order kinetics at the dose rates of 16-150Gy min(-1). The zero-order degradation rate constant was functionally related with irradiation dose rate. Experiments performed with or without addition of radical scavengers demonstrated that the role of *OH was predominant in CaLS degradation and the reductive species made minor contributions to CaLS degradation. Addition of appropriate amounts of H(2)O(2) significantly enhanced the mineralization of CaLS, e.g., addition of 10mM H(2)O(2) at a dose rate of 55Gy min(-1) elevated the mineralization rate constant by five times. The addition of Fenton's reagent to irradiated CaLS solutions facilitated the degradation of CaLS, but no obviously synergistic effect was observed.  相似文献   

20.
The environmental problems associated with textile activities are represented mainly by the extensive use of organic dyes. A great number of these compounds are recalcitrant and shown carcinogenic or mutagenic character. In this work three processes were studied for degradation of an anthraquinone dye (C.I. reactive blue-19). The ozonation process leads to complete decolorization with a very short reaction time; however, effective mineralization of the dye was not observed. The enzymatic process promotes quick decolorization of the dye; nevertheless, maximum decolorization degrees of about 30% are insignificant in relation to the decolorization degree achieved by the other processes. The best results were found for the photocatalytical process. The use of ZnO or TiO2 as photocatalysts, permits total decolorization and mineralization of the dye with reaction times of about 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号