共查询到13条相似文献,搜索用时 15 毫秒
1.
The Ala Wai Canal Watershed Model (ALAWAT) is a planning-level watershed model for approximating direct runoff, streamflow,
sediment loads, and loads for up to five pollutants. ALAWAT uses raster GIS data layers including land use, SCS soil hydrologic
groups, annual rainfall, and subwatershed delineations as direct model parameter inputs and can use daily total rainfall from
up to ten rain gauges and streamflow from up to ten stream gauges. ALAWAT uses a daily time step and can simulate flows for
up to ten-year periods and for up to 50 subwatersheds. Pollutant loads are approximated using a user-defined combination of
rating curve relationships, mean event concentrations, and loading/washoff parameters for specific subwatersheds, land uses,
and times of year. Using ALAWAT, annual average streamflow and baseflow relationships and urban suspended sediment loads were
approximated for the Ala Wai Canal watershed (about 10,400 acres) on the island of Oahu, Hawaii. Annual average urban suspended
sediments were approximated using two methods: mean event concentrations and pollutant loading and washoff. Parameters for
the pollutant loading and washoff method were then modified to simulate the effect of various street sweeping intervals on
sediment loads. 相似文献
2.
The term "barren hills" has been a keyword for land degradation in the uplands of Vietnam for over a decade. Nevertheless, the "barren" land is still not adequately ecologically characterized. In this work, we analyze land use-induced changes in vegetation and soil properties along a sequence of barren hills types formed on one physiotope. The study is undertaken in the Bac Kan province, one of the poorest upland regions where livestock plays an important role. A transition from an old-growth laurel forest to a sparse manmade grassland is characterized by a total of 177 species, rapid species turnover, and discrete dominants, and an overwhelming effect of disturbance history on both soil and vegetation patterning. Land degradation is most apparent in land use-induced maintenance of arrested successions, and the regeneration course is shifted towards drier formations. We hypothesize a conceptual model as an aid to understanding the process of early fallow differentiation in response to the patterned, fine-scale disturbances. The larger-scale implications of the observed trends in regeneration potentials deviation, and, in particular, the effect of water buffaloes in halting fallow successions, are discussed. 相似文献
3.
California’s population increased 25% between 1980 and 1990, resulting in rapid and extensive urbanization. Of a total 123,000
ha urbanized in 42 of the state’s 58 counties between 1984 and 1990, an estimated 13% occurred on irrigated prime farmland,
and 48% on wildlands or fallow marginal farmlands. Sixty-six percent of all new irrigated farmland put into production between
1984 and 1990 was of lesser quality than the prime farmland taken out of production by urbanization. Factors dictating the
agricultural development of marginal farmlands include the availability and price of water and land, agricultural commodity
prices, and technical innovations such as drip irrigation systems that impact the feasibility and costs of production. The
increasing amount of marginal farmland being put into production could have significant water quality consequences because
marginal lands are generally steeper, have more erodible soils, poorer drainage, and require more fertilizer than prime farmlands.
Although no data exist to test our hypothesis, and numerous variables preclude definitive predictions, the evidence suggests
that new irrigated marginal lands can increase nonpoint source (NPS) pollution for a given size area by an order of magnitude
in some cases. 相似文献
4.
Nepal SK 《Environmental management》2003,32(3):312-321
A trail study was conducted in the Sagarmatha (Mt. Everest) National Park, Nepal, during 1997–1998. Based on that study, this paper examines the spatial variability of trail conditions and analyzes factors that influence trail conditions. Logistic regression (multinomial logit model) is applied to examine the influence of use and environmental factors on trail conditions. The assessment of trail conditions is based on a four-class rating system: (class I, very little damaged; class II, moderately damaged, class III, heavily damaged; and class IV, severely damaged). Wald statistics and a model classification table have been used for data interpretation. Results indicate that altitude, trail gradient, hazard potential, and vegetation type are positively associated with trail condition. Trails are more degraded at higher altitude, on steep gradients, in areas with natural hazard potential, and within shrub/grassland zones. Strong correlations between high levels of trail degradation and higher frequencies of visitors and lodges were found. A detailed analysis of environmental and use factors could provide valuable information to park managers in their decisions about trail design, layout and maintenance, and efficient and effective visitor management strategies. Comparable studies on high alpine environments are needed to predict precisely the effects of topographic and climatic extremes. More refined approaches and experimental methods are necessary to control the effects of environmental factors. 相似文献
5.
Hydrological Responses to Climate and Land‐Use Changes along the North American East Coast: A 110‐Year Historical Reconstruction 下载免费PDF全文
Qichun Yang Hanqin Tian Marjorie A.M. Friedrichs Mingliang Liu Xia Li Jia Yang 《Journal of the American Water Resources Association》2015,51(1):47-67
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers. 相似文献
6.
Francisco Olivera Milver Valenzuela R. Srinivasan Janghwoan Choi Hiudae Cho Srikanth Koka Ashish Agrawal 《Journal of the American Water Resources Association》2006,42(2):295-309
This paper presents ArcGIS‐SWAT, a geodata model and geographic information system (GIS) interface for the Soil and Water Assessment Tool (SWAT). The ArcGIS‐SWAT data model is a system of geodatabases that store SWAT geographic, numeric, and text input data and results in an organized fashion. Thus, it is proposed that a single and comprehensive geodatabase be used as the repository of a SWAT simulation. The ArcGIS‐SWAT interface uses programming objects that conform to the Component Object Model (COM) design standard, which facilitate the use of functionality of other Windows‐based applications within ArcGIS‐SWAT. In particular, the use of MS Excel and MATLAB functionality for data analysis and visualization of results is demonstrated. Likewise, it is proposed to conduct hydrologic model integration through the sharing of information with a not‐model‐specific hub data model where information common to different models can be stored and from which it can be retrieved. As an example, it is demonstrated how the Hydrologic Modeling System (HMS) ‐ a computer application for flood analysis ‐ can use information originally developed by ArcGIS‐SWAT for SWAT. The application of ArcGIS‐SWAT to the Seco Creek watershed in Texas is presented. 相似文献
7.
EFFECTS OF SCALE ON LAND USE AND WATER QUALITY RELATIONSHIPS: A LONGITUDINAL BASIN‐WIDE PERSPECTIVE1
Nancy E. Gove Richard T Edwards Loveday L. Conquest 《Journal of the American Water Resources Association》2001,37(6):1721-1734
ABSTRACT: Human land use is a major source of change in catchments in developing areas. To better anticipate the long‐term effects of growth, land use planning requires estimates of how changes in land use will affect ecosystem processes and patterns across multiple scales of space and time. The complexity of biogeochemical and hydrologic interactions within a basin makes it difficult to scale up from process‐based studies of individual reaches to watershed scales over multiple decades. Empirical models relating land use/land cover (LULC) to water quality can be useful in long‐term planning, but require an understanding of the effects of scale on apparent land use‐water quality relationships. We empirically determined how apparent relationships between water quality and LULC data change at different scales, using LIJLC data from the Willapa Bay watershed (Washington) and water quality data collected along the Willapa and North Rivers. Spatial scales examined ranged from the local riparian scale to total upstream catchment. The strength of the correlations between LTJLC data and longitudinal water quality trends varied with scale. Different water quality parameters also varied in their response to changes in scale. Intermediate scales of land use data generally were better predictors than local riparian or total catchment scales. Additional data from the stream network did not increase the strength of relationships significantly. Because of the likelihood of scale‐induced artifacts, studies quantifying land use‐water quality relationships performed at single scales should be viewed with great caution. 相似文献
8.
R.N. Lerch E.J. Sadler C. Baffaut N.R. Kitchen K.A. Sudduth 《Journal of the American Water Resources Association》2011,47(2):224-238
Lerch, R.N., E.J. Sadler, C. Baffaut, N.R. Kitchen, and K.A. Sudduth, 2010. Herbicide Transport in Goodwater Creek Experimental Watershed: II. Long‐Term Research on Acetochlor, Alachlor, Metolachlor, and Metribuzin. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00504.x Abstract: Farmers in the Midwestern United States continue to be reliant on soil‐applied herbicides for weed control in crop production, and herbicide contamination of streams remains an environmental problem. The main objective of this study was to analyze trends in concentration and load of acetochlor, alachlor, metolachlor, and metribuzin in Goodwater Creek Experimental Watershed (GCEW) from 1992 to 2006. A secondary objective was to document the effects of best management practices (BMPs) implemented within GCEW on herbicide transport trends. Median relative herbicide loads, as a percent of applied, were 3.7% for metolachlor, 1.3% for metribuzin, 0.36% for acetochlor, and 0.18% for alachlor. The major decrease in alachlor use and increase in acetochlor use caused shifts in flow‐weighted concentrations that were observed over the entire concentration range. The smaller decrease in metolachlor use led to a consistent decreasing time trend only for the upper end of the concentration distribution. Metribuzin also showed moderate decreases in concentration with time since 1998. Annual loads were generally correlated to second quarter discharge. Despite extensive education efforts in the watershed, conservation BMPs within GCEW were mainly implemented to control erosion, and therefore had no discernable impact on reducing herbicide transport. Overall, changes in herbicide use and second quarter discharge had the greatest effect on trends in flow‐weighted concentration and annual load. 相似文献
9.
Daniel N. Moriasi Naresh Pai Jean L. Steiner Prasanna H. Gowda Michael Winchell Hendrik Rathjens Patrick J. Starks J. Alan Verser 《Journal of the American Water Resources Association》2019,55(5):1102-1115
Long‐term simulations of agricultural watersheds have often been done assuming constant land use over time, but this is not a realistic assumption for many agricultural regions. This paper presents the soil and water assessment tool (SWAT)‐Landuse Update Tool (LUT), a standalone, user‐friendly desktop‐based tool for updating land use in the SWAT model that allows users to process multi‐year land use data. SWAT‐LUT is compatible with several SWAT model interfaces, provides users with several options to easily prepare and incorporate land use changes (LUCs) over a simulation period, and allows users to incorporate past or emerging land use categories. Incorporation of LUCs is expected to provide realistic model parameterization and scenario simulations. SWAT‐LUT is a public domain interface written in Python programming language. Two applications at the Fort Cobb Reservoir Experimental Watershed located in Oklahoma and pertinent results are provided to demonstrate its use. Incorporating LUCs related to implementation of recommended conservation practices over the years reduced discharge, evapotranspiration, sediment, total nitrogen, and total phosphorus loads by 59%, 9%, 68%, 53%, and 88%, respectively. The user’s manual is included in this article as Supporting Information. The SWAT‐LUT executable file and an example SWAT project with three land use rasters and the user’s manual are available at the United States Department of Agriculture‐Agricultural Research Service Grazinglands Research Laboratory website under Software. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series. 相似文献
10.
11.
Donna B. Schwede Robin L. Dennis Mary Ann Bitz 《Journal of the American Water Resources Association》2009,45(4):973-985
Abstract: A tool for providing the linkage between air and water‐quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint‐source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8‐digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user‐supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle‐Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities. 相似文献
12.
Pete Campana John Knox Andrew Grundstein John Dowd 《Journal of the American Water Resources Association》2012,48(2):379-390
Campana, Pete, John Knox, Andrew Grundstein, and John Dowd, 2012. The 2007‐2009 Drought in Athens, Georgia, United States: A Climatological Analysis and an Assessment of Future Water Availability. Journal of the American Water Resources Association (JAWRA) 48(2): 379‐390. DOI: 10.1111/j.1752‐1688.2011.00619.x Abstract: Population growth and development in many regions of the world increase the demand for water and vulnerability to water shortages. Our research provides a case study of how population growth can augment the severity of a drought. During 2007‐2009, a drought event that caused extreme societal impacts occurred in the Athens, Georgia region (defined as Clarke, Barrow, Oconee, and Jackson counties). An examination of drought indices and precipitation records indicates that conditions were severe, but not worse than during the 1925‐1927, 1954‐1956, and 1985‐1987 drought events. A drought of similar length to the 2007‐2009 drought would be expected to occur approximately every 25 years. Streamflow analysis shows that discharge levels in area streams were at a record low during 2007 before water restrictions were implemented, because of greater water usage caused by recent population increases. These population increases, combined with a lack of water conservation, led to severe water shortages in the Athens region during late 2007. Only after per capita usage decreased did water resources last despite continuing drought conditions through 2009. Retaining mitigation strategies and withdrawal levels such as seen during the height of the drought will be an essential strategy to prevent water shortages during future extreme drought events. The key mitigation strategy, independent local action to restrict water use in advance of state‐level restrictions, is now prohibited by Georgia State Law. 相似文献
13.
Haie, Naim and Andrew A. Keller, 2012. Macro, Meso, and Micro‐Efficiencies in Water Resources Management: A New Framework Using Water Balance. Journal of the American Water Resources Association (JAWRA) 48(2): 235‐243. DOI: 10.1111/j.1752‐1688.2011.00611.x Abstract: One of the most important performance indicators for water resources systems (WRSs) management is efficiency. Here, water balance, based on mass conservation, is utilized to systemically develop three levels of composite efficiency indicators for a WRS, which are configurable based on two types of water totals: total inflow and total consumption (outflow that effectively is not available for reuse). The indices characterize hydrology of an area by including in their formulations the flow dynamics at three integrated levels. Furthermore, the usefulness of water is incorporated into the indicators by defining two weights: one for quality, and the other for beneficial attributes of water use. Usefulness Criterion is the product of quality and beneficial weights, emphasizing the equal significance of the two dimensions. Both of these weights depend on the system itself and the priorities of the supervising organization, which also are shaped by the objectives and values of the given society. These concepts lead to the definition of Macro, Meso, and Micro‐Efficiencies, which form a set of integrated indicators that explicitly promotes stakeholder involvement in evaluation and design of WRSs. Macro, Meso, and Micro‐Efficiencies should be maximized for both water totals, which is an integrated prerequisite for sustainability and is less promoted by competing stakeholders. To demonstrate this new framework, it is applied to published data for urban and agricultural cases and some results are explained. 相似文献