首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Vegetation and soil recovery in wilderness campsites closed to visitor use   总被引:3,自引:0,他引:3  
Recreational use of wilderness results in impacts to vegetation and soil in trails and campsites. Traditionally, campsite impact studies have compared campsites receiving various levels of use with unused control areas. Field studies in Sequoia National Park, California, indicate that the degree of impact to vegetation and soils also varies within campsites. The central areas of campsites, where trampling is concentrated, show lower plant species diversity, differences in relative species cover, more highly compacted soils, and lower soil nutrient concentrations than do peripheral, moderately trampled, and untrampled areas within the same campsite. Three years after closure to visitor use, the central areas show less increase in mean foliar plant cover, and soils remain more highly compacted than in previously moderately trampled areas of the same sites. Changes in relative species cover over time are used to assess both resiliency to trampling and species composition recovery within campsites closed to visitor use.  相似文献   

2.
Plant morphological characteristics and resistance to simulated trampling   总被引:5,自引:0,他引:5  
The relationship between responses of plants to trampling and their morphological characteristics was studied in a glasshouse experiment. Thirteen species with four different growth forms were used in this experiment. They were five tussock species.Chloris gayana, Eragrostis tenuifolia, Lolium perenne, Panicum maximum, andSporobolus elongatus; three prostate grasses,Axonopus compressus, Cynodon dactylon, andTrifolium repens, two herbaceous species,Daucus glochidiatus andHypochoeris radicata; and three woody species,Acacia macradenia, Acrotriche aggregata, andSida rhombifolia. These species were subjected to three levels of simulated trampling. For each species, measurements were taken of aboveground biomass, root biomass, leaf length, leaf width, leaf thickness, leaf number, broken leaf number and plant height. Overall, these measurements were greatest in the control plants, moderate in the level of light trampling, and the lowest in the level of heavy trampling. Biomass was used as a basis of the assessment of plant resistance to trampling. Three tussock species,Eragrostis tenuifolia, Lolium perenne, andSporobolus elongatus had a high resistance. Woody and erect herbaceous plants were more intolerant to trampling. There appear to be two processes involved in the reduction of the plant parameters: direct physical damage with portions of the plants detached, and physiological changes, which slow down vegetative growth rates. Plant height was found to be the most sensitive indicator of trampling damage.  相似文献   

3.
We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70–270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas.  相似文献   

4.
Impact of recreational activities on soil and vegetation was evaluated in eight forested camping and picnic areas in southern Rhode Island. Forest vegetation consists of mixed-oak and white pine stands. Soils are of granitic glacial till or outwash origin and textures range from loamy sand to find sandy loam. Recreational use resulted in significant compaction of soils as indexed by soil penetration resistance and bulk density. Evidence indicates that compaction influences bulk densities to a depth of about 12.7 cm. Rates of water infiltration are less on recreation areas. Soil water accretion and depletion during the growing season are less rapid on recreation sites than on control sites. Differences are attributed to reduced infiltration, percolation, and rooting activity. Much of the ground surface on recreation areas is devoid of vegetation. The surface consists primarily of bare mineral soil, rock, or litter. The plants most commonly present are grasses. Native ground cover vegetation including tree seedlings, ericaceous shrubs and herbs has been eliminated or greatly reduced by trampling. Damage to tree trunks is common in recreation areas. White pine radial growth and scarlet oak height growth were significantly less on recreation sites. Scarlet oak appears intolerant to heavy recreation use.  相似文献   

5.
We aimed to assess the impacts of recreational trampling on rare species, plant communities and landscape structure in the Iroise Biosphere Reserve (western France). Focusing on coastal grasslands, we first identified indicators discriminating human-induced short grasslands (i.e. maintained short by intensive trampling) from natural short grasslands (i.e. maintained by environmental constraints): the presence of lichens and succulent or woody species, which are known to be highly sensitive to trampling, as well as a shallow soil were good indicators of natural short grasslands. Recreational activities affected the majority of plots containing rare species, but one third of rare species (according to their habitat preference) appeared currently not threatened by recreational activities. The other rare species were found in grasslands with low trampling intensity and were not found in grasslands with greater trampling intensity. One lichen species (Teloshistes flavicans) was not affected by trampling intensity, while two plants species (Scilla verna and Ophioglossum lusitanicum) showed higher abundances when trampling was low to medium. When it occurs in natural short grasslands, tourist trampling reduced drastically plant species richness. However, when considering maritime high grasslands, we observed that species richness was higher under low trampling vs. no trampling, but decreased at higher trampling intensity. At a landscape scale, the mean annual rate of path creation was about 1.6% and tourist trampling has already completely destroyed 3.5ha of natural coastal vegetation. Trampling of maritime-high grassland has also created 31ha of short grasslands, which represent 50.8% of the whole short grassland habitat of the island. Moreover trampling affected respectively, 41% and 15% of natural short grasslands and maritime-high grasslands. One of the main suggestions for managers to minimise trampling impacts should be to protect areas of rocky soil covered by short grassland that are still non-trampled and not impacted. Fortunately, this appears compatible with a relatively free access of visitors to coastal areas, as tourists can be redirected towards maritime-high grasslands, an habitat which is less impacted by tourism in terms of affected surface, soil cover, loss of species, or presence of rare species host.  相似文献   

6.
Ground flora trampling studies: Five years after closure   总被引:8,自引:1,他引:8  
Trampling as an ecological factor is a major concern of the management of park, forest, nature preserves, and wilderness areas as recreational resources. Of particular importance to the management concept of carrying capacity is the relative resistance of native plant communities, to trampling and the resilience or the capacity of impacted communities to recover. This information can be used by management to establish seasonal use limits to prevent irreversible degradation of these resources. The purpose of this study was to follow the recolonizaton of experimental trail surfaces barren of vegetative cover and hiked at three levels of use intensity. Results of this study indicate that soil compaction as measured by soil penetration resistance increased progressively with use level while the total number of species, species diversity, and dominant index scores declined. A major finding was that the greatest degree of change occurred at the first level of hiking, indicating that major floristic measures were most affected by the least amount of hiking. Recolonization of impacted areas that received 100 trampling passes as measured by plant cover, dominant indices, floristic dissimilarity, and species diversity was similar to areas receiving four and eight times more trampling, despite major differences in soil penetration resistance. These data suggest limited use delivered at one time can be as damaging as increasing levels of use delivered at over time.  相似文献   

7.
A 4-year study was conducted to evaluate the consequences of human trampling on dryas and tussock tundra plant communities. Treatments of 25, 75, 200 and 500 trampling passes were applied in 0.75 m2 vegetation plots at a time of approximately peak seasonal biomass. Immediately after and 1 and 4 years after trampling, plots were evaluated on the basis of plant species cover, percent bare ground, vegetation height, and soil penetration resistance. One year after trampling, soils were collected for nitrogen analysis in highly disturbed and control plots. Immediately after trampling, 500 trampling passes resulted in approximately 50% cover loss in the dryas tundra and 70% cover loss in tussock tundra, but both communities showed a substantial capacity for regrowth. Plots where low and moderate levels of trampling were applied returned to pre-disturbance conditions by 4 years after trampling, but impact was still evident in plots subjected to high levels of disturbance. These results suggest that these tundra communities can tolerate moderate levels of hiking and camping provided that use is maintained below disturbance thresholds and that visitors employ appropriate minimum-impact techniques. By utilizing this information in a visitor education program combined with impact monitoring and management, it is possible to allow dispersed camping and still maintain these vegetation communities with a minimum of observable impact.  相似文献   

8.
Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.  相似文献   

9.
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.  相似文献   

10.
The effects of human trampling and firewood gathering on eight backcountry campsites in the Great Smoky Mountains were surveyed. Sample plots were classified as sitecenter, transition, firewood-gathering area, and control. The canopy in the center of the sites tended to be more open than that of control plots, with the greatest openings occurring at shelter sites in spruce-fir forest. Intensive human trampling in the center of the sites inhibited reproduction of tree species, whereas firewood gathering alone did not. In some cases where canopy opening had occurred, there was an increase in shrub and tree reproduction around the edge of the site. Reduction in the basal area of standing deadwood varied with the type of site; older growth stands were less depleted. Injuries to trees increased tenfold from control areas to the center of the campsites. Smaller fuels were more strongly impacted by trampling and little impacted by firewood gathering. Woody fuels in the 2.5- to 7.6-cm size class were preferred for firewood. A previously constructed carbon cycling model was modified to incorporate removal of firewood and litter on campsites. The model suggested that after extended removal of leaf litter, soil carbon takes 12 to 50 years to recover, but this hypothesis remains to be tested in the field.  相似文献   

11.
This second part of the study concerned the plant cover, gas contents, and soil properties of the side slope area of the landfill, which is not protected against gas infiltration. Five different sites on the slope and a control site outside the landfill were chosen, and pipes were installed in the region. Gas contents were tested, and plant cover recorded by quadrat analysis Over 20 species of grasses, herbs, and vines were present on the slope The relative adaptabilities of the species were ranked according to the abundance of the plants Plant cover was found to be negatively correlated with landfill gas contents. The landfill soil had elevated contents of nitrogen, organic carbon, and extractable metals Total nitrogen, ammonia nitrogen, and extractable lead were further identified to be negatively correlated while available phosphate was positively correlated with plant cover  相似文献   

12.
The susceptibility of Amaranthus hybridus L. seedlings to spent engine oil was investigated in soil supplemented with concentrations of oil ranging from 1–5 percent v/w. Parameters considered were relative growth rate (RGR), leaf area ratio (LAR), whole plant height, leaf area, leaf number, chlorophyll and protein levels. A relationship was found to exist between the inhibitory effects and the treatment concentrations. After seventy days growth in the treated soils, the mean height and leaf area of plants in soils treated with 5 percent spent engine oil were 27.0±1.25 cm and 5.63±0.36 cm2. These were significantly different (at p=0.05) from the respective values of 41.4±0.8 cm and 13.44±0.22 cm2 for the control plants. Levels of total chlorophyll (per gram fresh weight of leaves) and protein (per gram dry weight of whole plant) were higher in the control plants compared with those grown in oil treated soil. Results obtained from the growth analysis showed the inhibitory effects of spent engine oil on Amaranthus hybridus L.  相似文献   

13.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

14.
Some effects of domestic sheep grazing on vegetation and soils were measured at four sites in the western Mojave Desert. Although sheep have grazed the Mojave Desert for the past 50–100 years, the effects of grazing on the desert ecosystem are largely unknown.The results reflect only short-term effects of grazing, because fenced control areas were not available for study. Heavy grazing caused a 60% reduction in the above-ground biomass under creosote bushes (Larrea tridentata), and sheep trampling caused an increase in soil strength and decreased intershrub annual densities 24 and 28% in two areas. The average area per individual (cover) of burrobush (Ambrosia dumosa) decreased 16–19% and the cover of spiny hop-sage (Grayia spinosa) decreased 29% under grazing pressure. The volumes of individual Ambrosia were 21 and 65% less in two heavily grazed areas than in two lightly grazed areas; the volume of goldenhead (Acamptopappus sphaerocephalus) was 68% less in one heavily grazed area.These changes indicate that the range quality of the Mojave Desert is deteriorating under sheep grazing pressures. Trampling reduces annual cover and disrupts the soil surface, thus promoting wind erosion. The loss of annual biomass and shrub cover should adversely affect reptiles and rodents by removing food sources and protection. Soil strength increases may retard future growth of annuals, further contributing to erosion and food source losses. Studies should be initiated to determine the long-term effects of grazing in the Mojave Desert.  相似文献   

15.
The effect of spent engine oil on the height, leaf number, leaf area, stem girth, chlorophyll, and moisture contents of Corchorus olitorius grown on 0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, and 3.0% (v/w oil/soil) oil-contaminated soil was investigated. The engine oil at all concentrations delayed the germination of C. olitorius by 2 days (compared to control) and there was a general significant reduction in all the growth parameters in plants grown on contaminated soil compared to control plants. The highest leaf area of 26.8 cm2 was found in the control plant and least was found in the 0.6% soil (0.11 cm2) after 3 weeks while no values were recorded on the 0.8–3.0% engine-oil-contaminated soil after 5 weeks of experiment. The highest chlorophyll content was also found in the control plant (11.5 mg/l). This showed that spent engine oil has an adverse effect on the growth of C. olitorius plant.  相似文献   

16.
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10–70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.  相似文献   

17.
Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat conditions in a mosaic of patches of well-established grassed areas and bare, nonvegetated areas. Factors, including soil CO2, CH4, O2, nutrients, and other general soil conditions, were measured in relation to species distribution and grass biomass in the field. Cynodon dactylon was the dominant grass in the established grass areas but was less abundant in the areas bordering the bare areas where Paspalum paspalodes and Sporobolus africanus were common. A number of soil factors measured were significantly correlated with grass biomass and these included Mg, Ca, Zn, Mn, K, temperature, moisture, and CO2. However, a laboratory bioassay using the growth of C. dactylon with soils removed from the landfill indicated that there were no differences in the soils from the bare areas and those that supported high plant biomass. Thus, no nutrient deficiency or chemical toxicity was inherent in the soil in the laboratory. The results of the field investigation and bioassay indicated that soil CO2 as a result of landfill gas infiltration into the root zone was probably the main factor causing bare areas on the landfill where no grass species could colonize and grow and that C. dactylon was more sensitive to elevated soil CO2 than other grass species such as P. paspalodes and S. africanus.  相似文献   

18.
Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils.  相似文献   

19.
Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150–200 m2. Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6–7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m2 at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites.  相似文献   

20.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号