首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Burkina Faso where cooking with biomass is very common, little information exists regarding kitchen characteristics and their impact on air pollutant levels. The measurement of air pollutants such as respirable particulate matter (PM10), an important component of biomass smoke that has been linked to adverse health outcomes, can also pose challenges in terms of cost and the type of equipment needed. Carbon monoxide could potentially be a more economical and simpler measure of air pollution. The focus of this study was to first assess the association of kitchen characteristics with measured PM10 and CO levels and second, the relationship of PM10 with CO concentrations, across these different kitchen characteristics in households in Nouna, Burkina Faso. Twenty-four-hour concentrations of PM10 (area) were measured with portable monitors and CO (area and personal) estimated using color dosimeter tubes. Data on kitchen characteristics were collected through surveys. Most households used both wood and charcoal burned in three-stone and charcoal stoves. Mean outdoor kitchen PM10 levels were relatively high (774 μg/m3, 95 % CI 329–1,218 μg/m3), but lower than indoor concentrations (Satterthwaite t value, ?6.14; p?<?0.0001). In multivariable analyses, outdoor kitchens were negatively associated with PM10 (OR?=?0.06, 95 % CI 0.02–0.16, p value <0.0001) and CO (OR?=?0.03, 95 % CI 0.01–0.11, p value <0.0001) concentrations. Strong area PM10 and area CO correlations were found with indoor kitchens (Spearman’s r?=?0.82, p?<?0.0001), indoor stove use (Spearman’s r?=?0.82, p?<?0.0001), and the presence of a smoker in the household (Spearman’s r?=?0.83, p?<?0.0001). Weak correlations between area PM10 and personal CO levels were observed with three-stone (Spearman’s r?=?0.23, p?=?0.008) and improved stoves (Spearman’s r?=?0.34, p?=?0.003). This indicates that the extensive use of biomass fuels and multiple stove types for cooking still produce relatively high levels of exposure, even outdoors, suggesting that both fuel subsidies and stove improvement programs are likely necessary to address this problem. These findings also indicate that area CO color dosimeter tubes could be a useful measure of area PM10 concentrations when levels are influenced by strong emission sources or when used in indoors. The weaker correlation observed between area PM10 and personal CO levels suggests that area exposures are not as useful as proxies for personal exposures, which can vary widely from those recorded by stationary monitors.  相似文献   

2.
Personal 48-hr exposures to formaldehyde and acetaldehyde of 15 randomly selected participants were measured during the summer/autumn of 1997 using Sep-Pak DNPH-Silica cartridges as a part of the EXPOLIS study in Helsinki, Finland. In addition to personal exposures, simultaneous measurements of microenvironmental concentrations were conducted at each participant's residence (indoor and outdoor) and workplace. Mean personal exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb for acetaldehyde. Personal exposures were systematically lower than indoor residential concentrations for both compounds, and ambient air concentrations were lower than both indoor residential concentrations and personal exposure levels. Mean workplace concentrations of both compounds were lower than mean indoor residential concentrations. Correlation between personal exposures and indoor residential concentrations was statistically significant for both compounds. This indicated that indoor residential concentrations of formaldehyde and acetaldehyde are a better estimate of personal exposures than are concentrations in ambient air. In addition, a time-weighted exposure model did not improve the estimation of personal exposures above that obtained using indoor residential concentrations as a surrogate for personal exposures. Correlation between formaldehyde and acetaldehyde was statistically significant in outdoor microenvironments, suggesting that both compounds have similar sources and sinks in ambient urban air.  相似文献   

3.
The U.S. EPA studied the carbon monoxide (CO) exposures and resulting breath CO concentrations of 625 non-smoking persons in Washington, D.C., and 454 non-smokers in Denver, CO, in the winter of 1982–83. Mean population-weighted breath concentrations were 5.1 ± 0.2 (SE) ppm in Washington and 7.2 ± 0.2 ppm in Denver. These values were correlated with the preceding personal air CO exposures (Spearman rank correlation coefficient rs > 0.5, P < 0.0001) but not with the outdoor concentrations (rs < 0.2). However, the breath measurements did not agree very closely with the personal exposures according to the current (Coburn) model relating alveolar CO to ambient CO. One reason for the discrepancy may have been the slight observed negative bias displayed by the personal monitors. A method of using the breath measurements to arrive at an improved estimate of personal exposures has been developed and applied. The method leads to an upward revision of exposure estimates: about 10% of the Washington target population of 1.22 million non-smokers are estimated to have exceeded the EPA 8-h ambient standard of 9 ppm during the winter of 1982–83, well above the 3.5% indicated by the personal monitor measurements.  相似文献   

4.
As a part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study, 48 h integrated residential indoor, outdoor, and personal exposure concentrations of 10 carbonyls were simultaneously measured in 234 homes selected from three US cities using the Passive Aldehydes and Ketones Samplers (PAKS). In this paper, we examine the feasibility of using residential indoor concentrations to predict personal exposures to carbonyls. Based on paired t-tests, the means of indoor concentrations were not different from those of personal exposure concentrations for eight out of the 10 measured carbonyls, indicating indoor carbonyls concentrations, in general, well predicted the central tendency of personal exposure concentrations. In a linear regression model, indoor concentrations explained 47%, 55%, and 65% of personal exposure variance for formaldehyde, acetaldehyde, and hexaldehyde, respectively. The predictability of indoor concentrations on cross-individual variability in personal exposure for the other carbonyls was poorer, explaining<20% of variance for acetone, acrolein, crotonaldehyde, and glyoxal. A factor analysis, coupled with multiple linear regression analyses, was also performed to examine the impact of human activities on personal exposure concentrations. It was found that activities related to driving a vehicle and performing yard work had significant impacts on personal exposures to a few carbonyls.  相似文献   

5.
Investigators have typically relied on a single or few discrete time points as measures of polychlorinated biphenyl (PCB) body burden, however health effects are more likely to be the result of integrative exposure in time, optionally expressed as an area under the time curve (AUC) of PCB serum concentration. Using data from a subgroup of 93 infants from a birth cohort in eastern Slovakia—a region highly polluted by PCBs—we fit a system type model, customized to our longitudinal measures of serum PCB concentrations in cord, 6, 16, and 45 month blood specimens. The most abundant congener, PCB 153, was chosen for modeling purposes. In addition to currently used methods of exposure assessment, our approach estimates a concentration time profile for each subject, taking into account mean residence time of PCB 153 molecules in the body, duration of breast feeding, hypothetical PCB 153 concentration in steady-state without breast feeding and alternately without normal food intake. Hypothetical PCB 153 concentration in steady-state without normal food intake correlates with AUC (r = 0.84, p < 0.001) as well as with duration of breast feeding (r = 0.64, p < 0.001). It makes possible to determine each subject’s exposure profile expressed as AUC of PCBs serum concentration with a minimum model parameters. PCB body burden in most infants was strongly associated with duration of breast feeding in most, but not all children, was apparent from model output.  相似文献   

6.
Four populations of Anthoxanthum odoratum from North Wales, UK, were exposed to the following combinations of mean background and peak concentrations of ozone for 12 weeks in solardomes: LL (14.3 ppb, 18.9 ppb, respectively), LH (14.8 ppb, 52.3 ppb), HL (28.9 ppb, 35.7 ppb) and HH (30.5 ppb, 72.1 ppb). Elevated ozone rapidly induced premature senescence, with effect increasing in the order: LL < LH < HL < HH. By week 11, the LH and HL treatments had induced similar amounts of whole plant senescence even though the AOT4012 values (accumulated between 8am and 8pm) were very different at 10.6 ppm h and 4.1 ppm h, respectively. Overall, linear correlations between whole plant senescence were stronger for AOT0 than for AOT40. Intraspecific variation in the senescence response to the different profiles was observed after 11 weeks of exposure. Effects on growth and tillering were less pronounced than effects on senescence.  相似文献   

7.
In the US EPA's 1998 Baltimore Epidemiology-Exposure Panel Study, a group of 16 residents of a single building retirement community wore personal monitors recording personal fine particulate air pollution concentrations (PM2.5) for 27 days, while other monitors recorded concurrent apartment, central indoor, outdoor and ambient site PM2.5 concentrations. Using the Baltimore panel study data, we develop a Bayesian hierarchical model to characterize the relationship between personal exposure and concentrations of PM2.5 indoors and outdoors. Personal exposure is expressed as a linear combination of time spent in microenvironments and associated microenvironmental concentrations. The model incorporates all available monitoring data and accounts for missing data and sources of uncertainty such as measurement error and individual differences in exposure. We discuss the implications of using personal versus ambient PM2.5 measurements in characterization of personal exposure to PM2.5.  相似文献   

8.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

9.
Nitrogen dioxide is a ubiquitous pollutant in urban areas. Indoor NO2 concentrations are influenced by penetration of outdoor concentrations and by indoor sources. The objectives of this study were to evaluate personal exposure to NO2, taking into account human time-activity patterns in four Mexican cities. Passive filter badges were used for indoor, outdoor, and personal NO2 measurements over 48 hr and indoor workplace measurements over 16 hr. Volunteers completed a questionnaire on exposure factors and a time-activity diary during the sample period. An unpaired t test, an analysis of variance (ANOVA), and a linear regression were performed to compare differences among cities and mean personal NO2 concentrations involving housing characteristics, as well as to determine which variables predicted the personal NO2 concentration. Sampling periods were in April, May, and June 1996 in Mexico City, Guadalajara, Cuernavaca, and Monterrey. All 122 volunteers in the study were working adults, with a mean age of 34 (SD +/- 7.38); 64% were female, and the majority worked in public offices and universities. The highest NO2 concentrations were found in Mexico City (36 ppb for outdoor, 57 ppb for indoor, and 39 ppb for personal concentration) and the lowest in Monterrey (19 ppb for outdoor, 24 ppb for indoor, and 24 ppb for personal concentration). Significant differences in NO2 concentrations were found among the cities in different microenvironments. During the sampling period, volunteers spent 85% of their time indoors. The highest personal NO2 concentration was found when volunteers kept their windows closed (p = 0.03). In the regression model adjusted by city and gender, the best predictors of personal NO2 concentration were outdoor levels and time spent outdoors (R2 = 0.68). These findings suggest that outdoor NO2 concentrations were an important influence on the personal exposure to NO2, due to the specific characteristics and personal behavior of the people in these Mexican cities.  相似文献   

10.
Synthetic musks (SMs) have been widely used as fragrance ingredients in personal care and sanitary commodities. Due to their high volatility and particle-binding affinity, the indoor dust is a major reservoir of SMs, and dust ingestion could be an important exposure way to special populations, such as hairdressers. In spite of the known toxicity of SMs, there is no information regarding the occurrence of SMs in barbershop dusts and the exposure of hairdressers through indoor dust ingestion. In the present study, the levels of two nitro musks and five polycyclic musks were measured from indoor dust samples collected from barbershops, and some other indoor dust samples were also collected from dormitories, bathhouses and households for comparison. The concentrations of ∑SMs in barbershop dusts were 10–100 times higher than those from the other three indoor microenvironments. Polycyclic musks accounted for 89.4% of ∑SMs on average in all samples, of which two compounds, HHCB and AHTN jointly dominated 97.9% of polycyclic musks. The levels of HHCB and AHTN varied from 12.2 to 8.39 × 105 and from 13.2 to 3.49 × 105 ng g−1, respectively. The daily intakes (DIs) of ∑SMs through house dust ingestion were estimated using the model of high dust ingestion and worst-case exposure (P95), and the corresponding exposure rates were 2791, 135 and 727 ng d−1 for the hairdressers, general population and toddlers. SMs were also detected in blood samples collected from the hairdressers and normal adults (n = 50 and 10, respectively). There was no significant difference between these two groups. Despite the absence of higher SM concentrations in hairdresser’s blood, we should not overlook the potential occupational health risks due to their high SMs ingestion rate.  相似文献   

11.
A series of field studies were carried out in London, UK, during 1999–2000 in which over 400 fine particle (PM2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments. This was the first comprehensive PM2.5 personal exposure study of transport users. Both a fixed-route multi-transport mode study and a study of cyclists’ commuter journeys were undertaken. Subsequent to these field studies regression modelling of possible influencing factors of these exposure levels was carried out. Meteorological variables, traffic density, mode and route were considered; the relationships of personal exposure levels with fixed site monitor (FSM) concentrations, and of the FSM concentrations with the potential predictor variables, were also investigated. This analysis of the determinants of transport user exposure to PM2.5 in London, UK, showed that wind speed had a significant influence on personal exposure levels, though explained only up to 20% of the variability of road transport user exposure levels. The occurrence of higher wind speeds was strongly associated with a decrease in personal exposure levels; a 1.5–2.0 fold difference in exposure level concentrations was estimated between the 10th and 90th percentiles of wind speed. Route was a significant factor, whilst mode was not a significant factor in the street microenvironment (between bicycle, bus and car modes); models incorporating route and mode, as well as wind speed, explained approximately 35% of the variability in PM2.5 exposure levels. Personal exposure levels were reasonably correlated with urban background FSM concentrations, for fixed-route road mode (bicycle, bus and car) exposure level concentrations, r=0.27 (p<0.01) and for commuter cyclists’ exposure level concentrations r=0.58 (p<0.01).  相似文献   

12.
We examined the relationship between cotinine measures in follicular fluid (FF) and urine to inform our exposure assessment strategy for an ongoing epidemiological study of secondhand tobacco smoke (STS) exposure and early pregnancy loss. Among subjects undergoing in vitro fertilization (IVF), we compared cotinine levels in paired urine and FF samples from the same women and examined FF cotinine levels over time. We found a weak rank-order relationship (Spearman r < 0.2) and poor agreement for classifying nonsmoking individuals as exposed to STS (sensitivity = 0.29-0.71; specificity = 0.35-0.72) between cotinine concentrations in FF and urine. We observed fair reliability (ICC = 0.42-0.52) in FF cotinine concentrations from women undergoing multiple IVF cycles. If available, FF cotinine concentrations may be desired as a biomarker of low-level tobacco smoke exposure over urinary cotinine in studies of early reproduction. Collection of multiple FF samples for cotinine analysis may be needed to accurately represent long-term STS exposure.  相似文献   

13.
14.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

15.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

16.
Molting in crustaceans is an important endocrine-controlled biological process that plays a critical role in growth and reproduction. Many factors can affect this physiological cycle in crustaceans including environmental stressors and disease agents. For example the pathology of Taura Syndrome Virus (TSV) of shrimp is closely related to molting cycle. Similarly, endosulfan, a commonly used pesticide is a potential endocrine disruptor. This study explores interrelationships between pesticide exposure, virus infection and their interactions with physiology and susceptibility of the shrimp. Litopenaeus vannamei (Pacific white shrimp) were challenged with increasing doses of endosulfan and TSV (TSV-C, a Belize reference strain) to determine the respective median lethal concentrations (LC50s). The 96-h endosulfan LC50 was 5.32 μg L−1, while the 7-d TSV LC50 was 54.74 mg L−1. Subsequently, based on their respective LC50 values, a 20-d interaction experiment with sublethal concentrations of endosulfan (2 μg L−1) and TSV (30 mg L−1) confirmed a significant interaction (p < 0.05, χ2 = 5.29), and thereby the susceptibility of the shrimp. Concurrently, molt-stage of animals, both at the time of exposure and death, was compared with mortality. For animals challenged with TSV, no strong correlation between molt-stage and mortality was observed (p > 0.05). For animals exposed to endosulfan, animals in the postmolt stage were shown to be more susceptible to acute toxicity (p < 0.05). For animals exposed to both TSV and endosulfan, interference of endosulfan-associated stress lead to increasingly higher susceptibility at postmolt (p < 0.05) during the acute phase of the TSV disease cycle.  相似文献   

17.
Effects of physical/environmental factors on fine particle (PM2.5) exposure, outdoor-to-indoor transport and air exchange rate (AER) were examined. The fraction of ambient PM2.5 found indoors (FINF) and the fraction to which people are exposed (α) modify personal exposure to ambient PM2.5. Because FINF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in FINF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in FINF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict FINF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ.Total personal exposures to PM2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30–70%) and the largest contributor to (20–90%) indoor and personal exposures for PM2.5 mass and most species. Several activities had a dramatic impact on personal PM2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM2.5) improved the predictive power of the personal activity model for PM2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.  相似文献   

18.
Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by CTECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.  相似文献   

19.
We analyzed 15 polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) in fat tissue of 27 loggerhead sea turtles (Caretta caretta) from eastern Adriatic Sea with the curved carapace length ranging from 25.0 to 84.5 cm. The PCB profile was dominated by hexa- and hepta-chlorinated congeners, with PCB-153 (median: 114.9 ng g−1 wet mass), PCB-138 (80.0 ng g−1 w.m.), and PCB-180 (26.7 ng g−1 w.m.) detected with the highest levels. Toxic mono-ortho congeners PCB-118, PCB-105 and PCB-180 with dioxin-like toxicity were found in >70% samples. 4,4′-DDE (81.0 ng g−1 w.m.) prevailed the OCP signature, accounting for 80% of the total DDTs. A significant increasing trend in accumulation with size was found for PCB-52 (rs = 0.512, p < 0.01) and PCB-114 (rs = 0.421, p < 0.05). Comparison of our results with organochlorine contaminant (OC) pattern in some prey taxa suggest that contamination occurs primarily through the food web, with biomagnification factors of 0.14-6.99 which were positively correlated with the octanol-water partition coefficient (log Kow; p < 0.05). This study, based upon a fairly large sample size collected mostly from incidentally captured animals over a short time period (June 2001-November 2002), present a temporal snapshot of OC contamination in wild, free-ranging loggerheads from Adriatic feeding grounds and provide a baseline for monitoring the regional OC trends in this endangered species.  相似文献   

20.
Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter <2.5 μm; PM2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5.

Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号