共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction A mercury (Hg) processing plant previously operating in KwaZulu-Natal Province (South Africa) discharged Hg waste into a nearby
river system causing widespread contamination since the 1980s. Although the processing plant ceased operation in the 1990s,
Hg contamination (due to residual Hg) remains significant. Previous studies in the area since the plant’s closure have found
elevated Hg concentrations in fish, and that these concentrations were as a direct consequence of widespread contamination
of the Hg processing plant operations conducted between the 1980s and 1990s. 相似文献
2.
This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period. 相似文献
3.
Since the 19th century, large amounts of industrial waste were dumped in a reservoir adjacent to a chlor-alkali plant in the lower Ebro River (NE Spain). Previous toxicological analysis of carp populations inhabiting the surveyed area have shown that the highest biological impact attributable to mercury pollution occurred downstream of the discharge site. However, mercury speciation in fish from this polluted area has not been addressed yet. Thus, in the present study, piscivorous European catfish ( Silurus glanis) and non-piscivorous common carp ( Cyprinus carpio) were selected, to investigate the bioavailability and bioaccumulation capacities of both total mercury (THg) and methylmercury (MeHg) at the discharge site and downstream points. Multiple Correspondence Analysis (MCA) was applied to reduce the dimensionality of the data set, and Multiple Linear Regression (MLR) models were fitted in order to assess the relationship between both Hg species in fish and different variables of interest. Mercury levels in fish inhabiting the dam at the discharge site were found to be approximately 2-fold higher than those from an upstream site; while mercury pollution progressively increased downstream of the hot spot. In fact, both THg and MeHg levels at the farthest downstream point were 3 times greater than those close to the waste dump. This result clearly indicates downstream transport and increased mercury bioavailability as a function of distance downstream from the contamination source. A number of factors may affect both the downstream transport and increased Hg bioavailability associated with suspended particulate matter (SPM) and dissolved organic carbon (DOC). 相似文献
4.
Recent research has shown that some adult flamingos Phoenicopterus roseus collected from the Camargue Biosphere Reserve had tissue metal concentrations considerably higher than the average for this species. As the range of these birds is large, the origin of the contamination was unknown. Blood and feather samples from nestling flamingos were therefore analysed for trace metals to determine the presence and origin of local contamination. A comparison of elemental concentration in the feathers of nestling and adult flamingos revealed higher concentrations of Cd, Cu, Pb and Se in adults, and higher concentrations of Zn in juveniles. This was attributed to increased exposure to atmospheric pollutants of adults, and either differences in Zn requirements and metabolism between adults and juveniles, or a local contamination of the juveniles' food supply by Zn. Concentrations of Zn in serum were also very elevated compared with human standards. Cd, Cu, Zn and Se concentrations were analysed in outer (O) and inner (I) barbs (i.e. barbs that are, respectively, exposed or not exposed to external deposits) of greater coverts of nestling flamingos. A comparison of elemental concentrations in these two feather components indicates a local atmospheric contamination by Cd, Cu and Pb. 相似文献
5.
Contaminated industrial sites are important sources of pollution and may result in ecotoxicological effects on terrestrial, aquatic and groundwater ecosystems. An effect-based approach to evaluate and assess pollution-induced degradation due to contaminated groundwater was carried out in this study. The new concept, referred to as “Groundwater Quality TRIAD-like” (GwQT) approach, is adapted from classical TRIAD approaches. GwQT is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. These components are combined in the GwQT using qualitative and quantitative (using zero to one subindices) integration approaches. The TRIAD approach is applied for the first time on groundwater from one former industrial site located in Belgium. This approach will allow the classification of sites into categories according to the degree of contaminant-induced degradation. This new concept is a starting point for groundwater characterization and is open for improvement and adjustment. 相似文献
6.
Sediments contaminated by various sources of mercury (Hg) were studied at 8 sites in Sweden covering wide ranges of climate, salinity, and sediment types. At all sites, biota (plankton, sediment living organisms, and fish) showed enhanced concentrations of Hg relative to corresponding organisms at nearby reference sites. The key process determining the risk at these sites is the net transformation of inorganic Hg to the highly toxic and bioavailable methylmercury (MeHg). Accordingly, Hg concentrations in Perca fluviatilis were more strongly correlated to MeHg (p < 0.05) than to inorganic Hg concentrations in the sediments. At all sites, except one, concentrations of inorganic Hg (2-55 microg g(-1)) in sediments were significantly, positively correlated to the concentration of MeHg (4-90 ng g(-1)). The MeHg/Hg ratio (which is assumed to reflect the net production of MeHg normalized to the Hg concentration) varied widely among sites. The highest MeHg/Hg ratios were encountered in loose-fiber sediments situated in southern freshwaters, and the lowest ratios were found in brackish-water sediments and firm, minerogenic sediments at the northernmost freshwater site. This pattern may be explained by an increased MeHg production by methylating bacteria with increasing temperature, availability of energy-rich organic matter (which is correlated with primary production), and availability of neutral Hg sulfides in the sediment pore waters. These factors therefore need to be considered when the risk associated with Hg-contaminated sediments is assessed. 相似文献
7.
We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664-7421 ng g(-1)) and monomethylmercury (MMHg, 3-21 ng g(-1)) in the surface sediments (0-10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0-4 m), which was most pronounced for the dissolved MMHg (p < 0.001). However, mercury levels in biota samples (mostly cyprinid fish) were one order of magnitude lower than common regulatory values (i.e. 0.3-0.5 mg kg(-1)) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir. 相似文献
8.
BACKGROUND: The contamination of soils by heavy metals engenders important environmental and sanitary problems in Northern France where a smelter has been located for more than one hundred of years. It has been one of the most important Pb production sites in Europe until its closedown in March 2003. Ore smelting process generated considerable atmospheric emissions of dust. Despite an active environmental strategy, these emissions were still significant in 2002 with up to 17 tonnes of Pb, 32 tonnes of Zn and 1 tonne of Cd. Over the years, the generated deposits have led to an important contamination of the surrounding soils. Previous studies have shown pollutant transfers to plants, which can induce a risk for human and animal health. The objective of this study was to evaluate the consequences of the smelter closedown on the Cd and Pb contents of wheat (grain and straw) cultivated in the area. METHODS: Paired topsoil and vegetable samples were taken at harvest time at various distances to the smelter. The sample sites were chosen in order to represent a large range of soil metal contamination. Sampling was realised on several wheat harvests between 1997 and 2003. 25 samples were collected before the smelter closedown and 15 after. All ears of about 1 m long of two rows were manually picked and threshed in the lab. Similarly, straw was harvested at the same time. Total metal contents in soil and wheat samples were quantified. RESULTS: A negative correlation between metal concentrations in soil and the distance to the smelter was shown. The wheat grain and straw showed significant Cd and Pb contents. The straw had higher metal contents than the grain. During the smelter activity, the grain contents were up to 0.8 mg kg(-1) DM of Cd and 8 mg kg(-1) DM of Pb. For the straw, maximum contents were 5 mg kg(-1) DM of Cd and 114 mg kg(-1) DM of Pb. After the smelter closedown, we observed a very large decrease of Pb in the grain (82%) and in the straw (91%). A smaller decrease was observed for Cd in grain. Despite this improvement, 80% of the studied samples remained non-acceptable for human consumption, according to the European legislation values, due to a high Cd content. DISCUSSION: Results highlighted a difference in metal accumulation in the plant organs as well as a difference in metal uptake. The approach pointed out the importance of atmospheric fallout in the wheat contamination pathways for Pb. The smelter closedown has lead to a decrease of the Pb content in wheat. It is interesting to relate this finding with the lead blood levels in children living close to the smelter. CONCLUSIONS: Those results have confirmed the importance of dust fallout in the plant contamination pathways. Before the closedown, Pb measured in the plant was principally originating from the smelter dust emissions. It raised the question of the sanitary risks for humans and animals living in the surrounding a of the smelter. RECOMMENDATIONS AND PERSPECTIVES: In the literature, very few articles take the dust deposit as contamination pathways for crops into consideration. However, in highly contaminated sites, this pathway can be very important. Thus, it would be worthy studying the uptake of metal contaminants by plants through the foliar system. 相似文献
9.
This paper presents the temporal variation in surface-level ozone (O 3) measured at Gummidipoondi near Chennai, Tamilnadu. The site chosen for the present study has high potential for ozone generation sources, such as vehicular traffic and industrial activities. The site is also located near a hazardous waste management facility. The key sources of nitrogen oxides (NO x), which are considered to be an important precursor of O 3, include hazardous waste incineration, trucks bringing the hazardous wastes, and vehicles plying on the nearby National Highway 16 (NH 16). The measurements clearly showed diurnal variation, with maximum values observed during the noon hours and minimum values observed when solar radiation was less. The data showed a marked seasonal variation in O 3, with the highest hourly average O 3 concentration (497.2 µg/m 3) in the summer season. Consequently, in order to identify the long-range transport sources adding to the increased O 3 levels, backward trajectories were computed using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. It was found that the polluted air mass originated from the Southeast Asian region and the Indo-Gangetic Plain. The polluted air mass, which advected large amounts of carbon monoxide (CO) plumes, was analyzed using the Measurement of Pollution in the Troposphere (MOPITT) retrievals. The correlations of O 3 with temperature ( r = 0.746; P < 0.01) and solar radiation ( r = 0.751; P < 0.01) were strongly positive, and that with NO x was found to be negative. Stronger correlation of O 3 with NO x was observed during pre-monsoon months ( r = 0.627; P < 0.01) and following hours of photochemical reactions. There were substantial differences in concentrations between weekdays and weekends, with higher nitric oxide (NO) and nitrogen dioxide (NO 2), but lower O 3, concentrations on weekdays. A substantial weekday-weekend difference in O 3, which was higher on weekends, appears to be attributable to lower daytime traffic activity and hence reduced emissions of NO x to a “NO x-saturated” atmosphere. Implications: The assessment of ground-level ozone in an industrial area with hazardous waste management facility is very important, as there is high possibility for more generation of tropospheric ozone. Since the location of the study area is coastal, wind plays a major role in O 3 transportation; hence, the effects of wind speed and wind direction have been studied in different seasons. When compared with the other studies carried out in different places across India, the present study area has recorded much greater O 3 mixing ratio. This study can be useful for setting up control strategies in such industrial areas. 相似文献
10.
Environmental Science and Pollution Research - Thermal treatment of mercury (Hg)-contaminated soil was studied to investigate the desorption behavior of Hg at different temperatures. The soil... 相似文献
11.
This study measured the levels of 17 congeners of PCDDs/PCDFs in serum to compare the levels between potentially exposed workers at an industrial waste incinerator and any residents with no known exposures. The 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDD were detected in serum of workers but in controls. Likewise, 1,2,3,7,8-PeCDF, 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDF were detected only in serum of workers. The international toxic equivalent (TEQ) levels of PCDDs/PCDFs in sera of workers are much higher than in controls. Among PCDDs, the proportion of total concentration and TEQ level is dominated predominantly by 1,2,3,6,7,8- and 1,2,3,7,8,9-HxCDD. We need extensive studies to estimate human exposure and are continuing this investigation. 相似文献
12.
Background, aim, and scope The purpose of this study was to monitor and present the heavy metal concentrations in the blood of residents of areas near municipal waste incinerators (MWIs), who are more prone to environmental pollution. We also sought to compare and analyze the residents?? perception of environmental pollution as one of the factors affecting heavy metal concentrations in the blood using a survey about the perceived damage caused by the facilities. Since heavy metal levels in the blood can be affected not only by local environmental pollution but also by personal and occupational factors, heavy metal levels in the blood need to be verified and consistently monitored. Methods Residents who live within 300?m of MWIs in Seoul are acknowledged to be under indirect influence according to the Waste Disposal Act. A survey was given to 841 residents living within 300?m of a MWI from 2006 to 2009. The concentrations of heavy metals (lead, cadmium, and mercury) in the blood were measured in the 841 surveyed residents and in 105 residents in reference areas. Additionally, the perception of the damage caused by municipal waste incinerators was investigated using scores from 1 to 5 on a Likert scale. Results The measurements of the heavy metal concentrations in the blood showed that the mean concentrations of lead, cadmium, and mercury were 43.1, 1.7, and 1.3?ug/L, respectively. The blood levels of lead and cadmium were slightly higher in the group of the subjects who had resided the longest near the municipal waste incinerators. When compared with the domestic investigation by the Ministry of Environment, the concentrations of lead and cadmium were a little higher, while that of mercury was a little lower. Overall, there was no significant difference in the distribution of heavy metal levels in the blood among age groups. Additionally, the investigation of the perceived damage from municipal waste incinerators showed that the subjects 相似文献
13.
In this study, the concentrations of reduced sulfur compounds (RSC: H 2S, CH 3SH, DMS, and DMDS) were continuously measured from an odor monitoring station over a 4-month period (August–November 2005) using an on-line GC system. The hourly measurement data of RSC, collected along with some major aromatic VOCs (benzene, toluene, xylene, etc.), approached the sum of 1500; the mean for all hourly H 2S was computed to be 295 ppt, while those of the others were seen at 7 (DMS), 1 (CH 3SH), and 0.4 ppt (DMDS). When these RSC data were compared across two seasons and on a 24 h scale basis, the values for either the summer or nighttime periods were generally high relative to their counterparts in the fall and daytime. Analysis of these RSC data generally suggests that most RSCs occur at some ppt concentration ranges and that their values frequently fall below detection limits (DL) values (except for H 2S). If the total number of effective data sets (i.e., above DL values) are compared to each other, the results tend to differ significantly between H 2S and the others: the proportion of effective number was as high as 75% for H 2S, while the others were very low (6% of DMS and even less than that for the others). The distributions of RSC were hence clearly distinguished from those of VOCs in that the determination of the latter was scarcely limited by the instrumental detectability. According to the present study, the H 2S data exhibit strong potential as the malodor tracers, while those of the other RSCs are unlikely due to the limited detectability. The overall results of this study hence suggest that several factors which include the selection of target compounds, the location of the monitoring points, and the scale (or number) of total monitoring points should be considered simultaneously to effectively track down the odor occurrence patterns in areas near strong source processes. 相似文献
14.
Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum–Citharexylum myrianthum, Inga–Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production. 相似文献
15.
Human and ecological risk assessment requires the sources, distribution, mobility and environmental behaviour of contaminants to be investigated on a site-specific basis. It often deals with data sets which are relatively small and affected by sampling gaps. In the case of a polycyclic aromatic hydrocarbon (PAH) contaminated industrial site, Kriging interpolation of spatial data and principal component analysis (PCA) proved useful for extracting additional value from the data set. Kriging was adopted for assessing the horizontal and vertical distribution and transport of PAHs in soil. PCA was applied to PAH concentration and relative abundance in soil samples and interpreted on the basis of the PAH physico-chemical and bio-degradation properties. It revealed correlation with the products of a neighbouring factory and the weathering of the lighter PAHs. The geo- and multivariate statistical results were coupled with the previous hydrogeological characterisation of the site to develop a site-conceptual model for use in the exposure scenario modelling for risk assessment. 相似文献
16.
BackgroundPolychlorinated biphenyls (PCBs) and organochlorine pesticides are common environmental contaminants that have been associated with human health problems. ObjectivesTo assess serum concentrations of several organochlorine contaminants in general population living in a city with an ancient agricultural tradition and to identify possible exposure sources in Sicily. MethodsA cross-sectional study was conducted on 101 individuals. Each participant answered a face-to-face questionnaire submitted by well-trained personnel and provided a serum sample which was analyzed for the concentrations of PCBs, HCB, HCHs and DDTs by using gas-chromatography coupled with mass spectrometry. ResultsHCB, p,p′-DDE, PCB 138, PCB 153 and PCB 180 were detected in more than 80% of the study participants. The ng g −1 lipid median concentrations were: 18.6 for HCB; 175.1 for p,p′-DDE; 22. for PCB 138; 32.5 for PCB 153 and 23.0 for PCB 180. PCB 153 and PCB 138, PCB 138 and PCB 180, PCB 153 and PCB 180, and p,p′-DDE and HCB showed a high correlation each other ( p < 0.05). HCB and p,p′-DDE concentrations were significantly higher in subjects >49 years old (adj- p = 0.03 in 50-69 years old and adj- p < 0.001 in >69 years old, respectively) whereas PCB 138, PCB 153 and PCB 180 concentrations were higher in males (adj- p = 0.03), in subjects >69 years old (adj- p = 0.04) and in current smokers (adj- p = 0.04). ConclusionsThe present study shows that serum concentrations of organochlorine compounds detected in subjects living in a small Sicilian city with ancient agricultural tradition are similar to those found in subjects living in urban areas of other countries. However, further investigations are needed to compare data from rural/urban areas in the same country, assessing correlations between serum concentrations of several chemical compounds and potential health effects in general population. 相似文献
17.
Ambient air and deposition samples were collected in the period of July 2004-May 2005 in an industrial district of Bursa, Turkey and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds. The overall average of fourteen bulk deposition fluxes for PAHs was 3300+/-5100 ng m(-2) d(-1). PAH depositions showed a seasonal variation and they were higher in winter months. This was probably due to increases in residential heating activities and decreases in atmospheric mixing layer levels. Ambient air samples, measured with a high volume air sampler, were collected from the same site. The average total concentration including gas and particulate phase was about 300+/-420 ng m(-3) and it was in the range of previously reported values. Some of the ambient air and bulk deposition samples were collected simultaneously in dry periods. Both concurrently measured values were used to calculate the dry deposition velocities whose overall average value was 0.45+/-0.35 cm s(-1). 相似文献
18.
Fluoride concentration in bones and differential haemotological characteristics (RBC, haemoglobin, haematocrit, mean corpusclar haemoglobin and mean corpuscular volume) were measured in amphibians, Bufo melanostictus, collected from fluoride-contaminated and -uncontaminated areas. The average haemoglobin content, total RBC count and haematocrit (%) in blood samples were found to be significantly reduced, while mean corpuscular concentration and volume were significantly elevated in individuals from the contaminated area in comparison to those from the uncontaminated area. Fluoride concentration was approximately 11 times greater in the bones of toads from the contaminated area. 相似文献
19.
Groundwater quality in coastal area has been an issue of interest because of excessive groundwater extraction for human use, for example, industrialization, irrigation, which can lead to saltwater intrusion. The study develops an integrated data analysis procedure based on multivariate statistics principal component analysis (PCA), hierarchical cluster analysis (HCA) and redundancy analysis (RDA), to determine the effects of key environmental conditions on the formulation of groundwater pollutants. This proposed method was demonstrated by analyzing groundwater quality monitoring data collected between 2011 and 2014 from four coastal industrial areas in Changhua county of Taiwan, namely Chuansing, Xianxi, Lukang and Fangyuan industrial parks. First, different environmental conditions in each industrial region were explored by PCA. The spatial hierarchy and spatial distribution of pollutant categories were then identified using HCA with the kriging method. Finally, the effect of environmental conditions on constitutive pollutants were identified with RDA. The three environmental patterns identified from the analytical results in Chuansing, Lukang and Xianxi were the salination factor (including conductivity and general hardness (GH)), water level and redox condition (including dissolved oxygen and oxidation–reduction potential). Fangyuan industrial park had only two patterns, namely salination (including conductivity and GH) and oxygen content (including DO and depth). The pollutant category indicated high concentrations of all pollutants in Chuansing and Fangyuan, and higher concentration of SO 42?, TDS, Cl ? in Xianxi, and of NH 3-N, Mn, Fe and TOC in Lukang. According to RDA results, salination caused the high concentrations of NH 3N, Cl ?, TDS in Chuansing, and of Cl ?, TDS and SO 42? in Xianxi and Lukang. Additionally, salination caused high concentrations of Fe in both Lukang and Fangyuan industrial parks in combination with those three pollutants. The redox condition was linked to high content of NO 3? in Chuansing and Lukang, and of TOC in Xianxi. In Fangyuan industrial park, NO 3? was also linked to high oxygen concentration. In summary, the combination of PCA, HCA and RDA enables the analysis of monitoring data to support policy decision-making. 相似文献
20.
At many "real world" field sites, the number of available monitoring wells is limited due to economic or geological reasons. Under such restricted conditions, it is difficult to perform a reliable field investigation and to quantify primary lines of evidence for natural attenuation (NA), like the documentation of a decrease of contaminant mass flux in flow direction. This study reports the results of a groundwater investigation at a former manufactured gas plant situated in a Quaternary river valley in southwest Germany. The location, infrastructure and aquifer setting are typical of many industrial sites in Germany. Due to difficult drilling conditions (coarse glaciofluvial gravel deposits and an anthropogenic fill above the aquifer), only 12 monitoring wells were available for the investigation and localisation of the contaminant plume. These wells were situated along three control planes (CP) downgradient from the contaminant source, with four wells along each plane. Based on the sparse set of monitoring wells, field scale mass fluxes and first-order natural attenuation rate constants of benzene, toluene, ethylbenzene, and o-xylene and p-xylene (BTEX) and low molecular weight polycyclic aromatic hydrocarbons (PAH) were estimated utilizing different point scale and also a new integral investigation method. The results show that even at a heterogeneous site with a sparse monitoring network point scale investigation methods can provide reliable information on field scale natural attenuation rates, if a dependable flow model or tracer test data is available. If this information is not available, only the new integral investigation method presented can yield adequate results for the quantification of contaminant mass fluxes under sparse monitoring conditions. 相似文献
|