首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most natural local systems exchange organisms with a regional pool of species through migration and dispersal. Such metacommunity processes of interconnected multispecies assemblages are likely to affect local dynamics of both species and processes. We present results from an artificial marine outdoor rock pool system in which we investigated the factors of (1) local grazer richness and composition, and (2) connectivity of local patches to a regional species pool, and their effects on algal biomass. Local species richness of six grazers was manipulated in both open and closed pools, which were embedded in a regional species pool containing all six grazers. Grazer richness showed significant net biodiversity effects on grazing in the closed, but not in the open, system. Grazer composition, on the other hand, showed significant effects on grazing in both open and closed systems, depending on which species were initially present. The two most efficient grazers were able to compensate for less efficient grazers in species mixtures, hence ensuring the function of grazing. The efficiency of top-down control of algal biomass in open systems thus depends on which particular species are lost. Further, differences in grazing between the open and closed system changed over time due to temporal dynamics in grazer composition. The results emphasize the importance of including system connectivity in experimental designs to allow an extrapolation of biodiversity ecosystem-functioning relationships to natural systems.  相似文献   

2.

Background

Macroinvertebrates in aquatic ecosystems are repeatedly exposed to pesticides during their life cycle. Effects of consecutive exposure during different life stages and possible synergistic effects are not addressed in the standardized hazard assessment. The present study investigated two environmentally relevant exposure scenarios in batch (microcosm) and artificial indoor stream (mesocosm) experiments using the larvae of the mayfly Rhithrogena semicolorata (grazer) and natural aufwuchs. Grazers were analysed regarding growth, physiological condition, and drift behaviour, while the aufwuchs was analysed in terms of biomass using the particulate organic carbon as well as the chlorophyll a content. The aim was to reveal direct and indirect effects of an herbicide exposure during autumn on juvenile grazers and an insecticide exposure during spring on semi-juvenile grazers.

Results

Direct and indirect effects were found in both exposure scenarios at environmentally relevant concentrations. In the herbicide exposure scenario with terbutryn, clear direct effects on the aufwuchs community with a LOEC of 0.38 µg L?1 were found. Effect levels of grazers due to indirect effects were equal, with the overnight drift being the most sensitive grazer endpoint. In the insecticide exposure scenario, clear lethal and sub lethal effects of lambda-cyhalothrin were evident. Derived LC50 values for the artificial indoor stream and batch experiment were 2.42 µg g?1 OC (69 days) and 1.2 µg g?1 OC (28 days), respectively. Sub lethal effects in terms of increased drift as well-reduced growth and triglyceride levels were found at concentrations of 1.4 and 0.09 µg g?1 OC (LOECs). These results were confirmed by the batch experiment, which revealed effect values in the similar range. Finally, a clear indirect effect of the insecticide on the aufwuchs was evident in the batch experiment with an LOEC at 0.9 µg g?1 OC.

Conclusion

Toxicity Exposure Ratios calculated with the derived effect values indicate a risk for the investigated grazer by both pesticides. Moreover, observed indirect effects during the herbicide exposure seem to be able to affect the grazers during a second exposure with an insecticide, due to reduced physiological conditions. We suggest further research with time-shifted exposure scenarios to gain a better understanding of the complex interactions of pesticides with the life cycle and the food webs of macroinvertebrates.
  相似文献   

3.
A mathematical model has been constructed for the algal community on the rocky shores of a Norwegian fjord. We report here on the studies of competition and colonization along a vertical transect from the upper intertidal to the sublittoral habiats. Results on species abundance and distribution (patterns of zonation) and time to reach maturity have been compared to observations both in the fjord area and in other rocky shore areas.Competition coefficients for the algae were inferred from plant morphology and shown to be in agreement with observations of algal abundance and their zone-forming ability. Competition restricts the distribution of the species, especially at the lower elevations, but does not alter their relative position. However, increasing uniform competition prolongs the time in which zone-forming can occur, and it also decreases the overall biomass which an area can sustain. Colonization by a single species may create transient stages in community development of the same order of magnitude as algae longevity, and probably also alters the zonation pattern to some degree.The simulation results indicate that the large-scale algal distribution pattern in the Hardangerfjord area results from global stability of the rocky shore community.  相似文献   

4.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

5.
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well as the frequency of interactive effects and whether they tend to enhance or depress plant performance, have never been comprehensively assessed across the many published studies on plant-enemy and plant-mutualist interactions. We performed a meta-analysis of experiments in which two enemies, two mutualists, or an enemy and a mutualist were manipulated factorially. Specifically, we performed a factorial meta-analysis using the log response ratio. We found that the magnitude of (negative) enemy effects was greater than that of (positive) mutualist effects in isolation, but in the presence of other species, the two effects were of comparable magnitude. Hence studies evaluating single-species effects of mutualists may underestimate the true effects found in natural settings, where multiple interactions are the norm and indirect effects are possible. Enemies did not on average influence the effects on plant performance of other enemies, nor did mutualists influence the effects of mutualists. However, these averages mask significant and large, but positive or negative, interactions in individual studies. In contrast, mutualists ameliorated the negative effects of enemies in a manner that benefited plants; this overall effect was driven by interactions between pathogens and belowground mutualists (bacteria and mycorrhizal fungi). The high frequency of significant interactive effects suggests a widespread potential for diffuse rather than pairwise coevolutionary interactions between plants and their enemies and mutualists. Pollinators and mycorrhizal fungi enhanced plant performance more than did bacterial mutualists. In the greenhouse (but not the field), pathogens reduced plant performance more than did herbivores, pathogens were more damaging to herbaceous than to woody plants, and herbivores were more damaging to crop than to non-crop plants (suggesting evolutionary change in plants or herbivores following crop domestication). We discuss how observed differences in effect size might be confounded with methodological differences among studies.  相似文献   

6.
Sacoglossans use chloroplasts taken from algal food for photosynthesis (kleptoplasty), but the adaptive significance of this phenomenon remains unclear. Two con-generic sacoglossans (Elysia trisinuata and E. atroviridis) were collected in 2009–2011 from Shirahama (33.69°N, 135.34°E) and Mukaishima (34.37°N, 133.22°E), Japan, respectively. They were individually maintained for 16 days under four experimental conditions (combination of light/dark and with/without food), and their survival rate and relative (=final/initial) weights were measured. Both light and food had positive effects on the survival in E. trisinuata, whereas no positive effects of light or food on survival were detected in E. atroviridis. Both light and food had positive effects on relative weights in both species, but light had smaller effects than food. A significant interaction term between light and food was detected in E. trisinuata (but not in E. atroviridis) in that only the presence of both resulted in weight gains. This result suggests that E. trisinuata can obtain sufficient additional energy from photosynthesis for sustaining growth when fresh chloroplasts are continuously supplied from algal food. In addition, fluorescence yield measurements showed that unfed individuals of both E. trisinuata and E. atroviridis lost photosynthetic activity soon (<4 and 4–8 days, respectively). In conclusion, photosynthesis may function to obtain supplementary nutrition for sustaining growth when food is available in sacoglossans with short-term functional kleptoplasty.  相似文献   

7.
Alkanes and alkenes in marine benthic algae   总被引:2,自引:0,他引:2  
Saturated and olefinic hydrocarbons were determined in additional species of benthic marine algae from the Cape Cod (Massachusetts, USA) area (see: Youngblood et al., 1971). The distribution of homologous and isomeric olefins was studied in plants of different age and in morphologically different parts of the same specimen. With two minor exceptions, only normal alkanes and alkenes are present. The methylene-interrupted C19- and C21-polyolefins are particularly abundant; 1-heneicosahexaene and the corresponding pentaene are common to all brown algae, while the corresponding 3-isomers occur in green algae. The hydrocarbon concentration, the alkene-to-alkane ratio and the polyolefin content are highest in young plants or in rapidly growing tissues of older plants. This suggests a deeper involvement in cell biochemistry of straight-chain hydrocarbons than previously considered. The biosynthesis of the plant polyolefins remains to be explored; no immediately obvious precursors of the 1-polyolefins were found among the algal fatty acids. The hydrocarbon composition of these benthic algae differs greatly from that of fossil fuels in its simplicity and predominately unsaturated nature. The separation of the isomers by gas chromatography and their structural elucidation by mass spectrometry, alone and in combination with hydrogenation and ozonolysis, are discussed.Contribution No. 3155 of the Woods Hole Oceanographic Institution.  相似文献   

8.
A. Hatcher 《Marine Biology》1989,102(4):445-452
This study investigated an incubation method which employed simultaneous measurement of CO2 production and O2 consumption rates to calculate the RQ (respiratory quotient; CO2 production rate: O2 consumption rate) of individual benthic marine invertebrates. Carbon dioxide production rates were calculated from changes in CO2 concentration determined using seawater pH. O2 consumption rates were calculated from changes in O2 concentration with a correction applied for O2 flux across the air/water interface due to gaseous exchange. Species examined were Triphyllozoon sp. cf. moniliferum (MacGillivray 1860), a bryozoan; Herdmania momus (Savigny), a solitary ascidian; Poneroplax albida (Blainville 1825), a chiton; and Haliotis roei (Gray 1826), an abalone. Six individuals of each were collected on 14 November 1985 from the limestone walls of a cave in a nearshore reef off Marmion, Western Australia. After acclimation for 6 h in experimental conditions, rates of CO2 production and O2 consumption were measured. A minimum period of 4 h was required to obtain consistent RQ values for each species. The standard error (SE) of the (calculated) RQ ratio was 14 to 33% of the mean in incubations of 4 h, and less than 14% in incubations of 4 to 12 h. The RQ is commonly used as an indicator of unknown catabolic substrates by comparing it with biochemically determined limits for known substrates. This study provides a strong argument against using the RQ of individual animals to draw any conclusions about catabolic substrates. Unexplained variation in the components of the RQ of an individual, measured over short time periods, and the potential involvement of stored reserves in catabolism, over longer time periods, obscure the relationship between the RQ of individual animals and the ratio's biochemically determined limits.  相似文献   

9.
Abundances of macroinfaunal invertebrates in sand dollar (Dendraster excentricus) beds and in adjacent areas free of sand dollars were studied at 10 intertidal sites in the Pacific Northwest region of the USA and Canada. Each site was sampled once in late summer of 1977. There were no significant differences in overall diversity of species between the beds and adjacent areas; nor did cluster analysis indicate a sand dollar bed community. However, a polychaete (Armandia brevis) was significantly more abundant inside the beds than just outside them. Conversely, in comparison to the beds, adjacent regions contained significantly more specimens of the following species: a bivalve (Transennella tantilla), several tubicolous crustaceans (Corophium spp., Ampelisca agassizi, and Leptochelia savignyi) and two polychaetes (Glycinde polygnatha and Malacoceros arenicola). Sediment characteristics at each study site were not correlated with the presence or absence of sand dollars; moreover, a comparison among the 10 sites revealed no sediment characteristics typical of sand dollar beds. At most of the sites, significantly fewer tube-building invertebrates occurred inside sand dollar beds than outside. The discussion considers the possibility that mechanical disturbance by the sand dollars tends to exclude some macroinvertebrates (especially tubicolous ones) from sand dollar beds.  相似文献   

10.
Saturated and unsaturated hydrocarbons in marine benthic algae   总被引:2,自引:0,他引:2  
Saturated and olefinic hydrocarbons were determined in 24 species of green, brown and red benthic marine algae from the Cape Cod area (Massachusetts, USA). Among the saturated hydrocarbons, n-pentadecane predominates in the brown and n-heptadecane in the red algae. A C17 alkyleyclopropane has been identified tentatively in Ulvalactuca and Enteromorpha compressa, two species of green algae. Mono-and diolefinic C15 and C17 hydrocarbons are common. The structures of several new C17, C19 and C21 mono-to hexaolefins have been elucidated by gas chromatography, mass spectrometry and ozonolysis. In fruiting Ascophyllum nodosum, the polyunsaturated hydrocarbons carbons occur exclusively in the reproductive structures. The rest of the plant contains n-alkanes from C15 to C21. A link between the reproductive chemistry of benthic and planktonic algae and their olefin content is suggested. An intriguing speculation is based on Paffenhöfer's (1970) observation that the sex ratio of laboratory reared Calanus helgolandicus depends upon the species of algae fed to the nauplii. The percentage of males produced correlates with our analyses of heneicosahexaene in the algal food. Our analyses of the hydrocarbons in benthic marine algae from coastal environments should aid studies of the coastal food web and should enable us to distinguish between hydrocarbon pollutants and the natural hydrocarbon background in inshore waters.Contribution No. 2582 of the Woods Hole Oceanographic Institution; and Contribution No. 227, Systematics-Ecology Program.  相似文献   

11.
The distribution of vascular plant species richness along an altitudinal gradient and their relationships with environmental variables, including slope, aspect, bank (flooding) height, and river width of the Xiangxi River, Hubei Province, were examined. Total vascular plant species richness changed with elevation: it increased at lower elevations, reached a maximum in the midreaches and decreased thereafter. In particular, tree and herbaceous species richness were related to altitude. Correlation analysis (Kendall's τ) between species richness and environmental variables indicated that the change in species richness in the riparian zone was determined by riparian environmental factors and characteristics of regional vegetation distribution along the altitudinal gradient. The low species richness at lower elevations resulted from seasonal flooding and human activities – agriculture and fuel collection – and the higher species richness in the midreaches reflected transitional zones in natural vegetation types that had had little disturbance. These results on species distribution in the riparian community could be utilized as a reference for restoration efforts to improve water quality of the emerging reservoir resulting from the Three Gorges Hydroelectric Dam project.  相似文献   

12.
We investigated the relative roles of natural factors and shoreline harvest leading to recent declines of the black leather chiton (Katharina tunicata) on the outer Kenai Peninsula, Alaska (U.S.A.). This intertidal mollusk is a strongly interacting grazer and a culturally important subsistence fishery for Sugpiaq (Chugach Alutiiq) natives. We took multiple approaches to determine causes of decline. Field surveys examined the significant predictors of Katharina density and biomass across 11 sites varying in harvest pressure, and an integrated analysis of archaeological faunal remains, historical records, traditional ecological knowledge, and contemporary subsistence invertebrate landings examined changes in subsistence practices through time. Strong evidence suggests that current spatial variation in Katharina density and biomass is driven by both human exploitation and sea otter (Enhydra lutris) predation. Traditional knowledge, calibrated by subsistence harvest data, further revealed that several benthic marine invertebrates (sea urchin, crab, clams, and cockles) have declined serially beginning in the 1960s, with reduced densities and sizes of Katharina being the most recent. The timing of these declines was coincident with changes in human behavior (from semi-nomadic to increasingly permanent settlement patterns, improved extractive technologies, regional commercial crustacean exploitation, the erosion of culturally based season and size restrictions) and with the reestablishment of sea otters. We propose that a spatial concentration in shoreline collection pressure through time, increased harvest efficiency, and the serial depletion of alternative marine invertebrate prey have led to intensified per capita predator impacts on Katharina and thus its recent localized decline.  相似文献   

13.
Patterns of polychaete species' dispersion in the San Diego Trough, Southern California Continental Borderland, North Pacific Ocean, at a depth of 1230 m are analyzed. Samples consist of 4 replicate 0.25-m2 box cores, each partitioned into twenty-five 0.01-m2 subcores, and of 1 unpartitioned core. The sampler is biased but, when this bias is taken into account, few species show strong aggregation either between or within cores. If all species are considered together as replicates, intraspecific aggregation is detected between cores, but uniform dispersion dominates within cores. Patchiness or habitat partitioning on the assayed scales can thus account for little of the extremely high species' diversity observed. Apparently due to an environmental structure having a “grain” smaller than 0.01-m2, the diversity of species assumed to be sedentary is higher than the diversity of species assumed to be mobile. One evidence of such structure is a negative covariance between paraonid abundance and density of “mudballs” constructed by a cirratulid. Consideration of these results suggests that either grain specialization or simultaneous, biogenic disequilibrium or both act on spatial scales smaller than 0.01-m2 to maintain high polychaete species' diversity in the San Diego Trough.  相似文献   

14.
Kerswell AP 《Ecology》2006,87(10):2479-2488
Species richness patterns are remarkably similar across many marine taxa, yet explanations of how such patterns are generated and maintained are conflicting. I use published occurrence data to identify previously masked latitudinal and longitudinal diversity gradients for all genera of benthic marine macroalgae and for species in the Order Bryopsidales. I also quantify the size, location, and overlap of macroalgal geographic ranges to determine how the observed richness patterns are generated. Algal genera exhibit an inverse latitudinal gradient, with biodiversity hotspots in temperate regions, while bryopsidalean species reach peak diversity in the tropics. The geographic distribution of range locations results in distinct clusters of range mid-points. In particular, widespread taxa are centered within tight latitudinal and longitudinal bands in the middle of the Indo-Pacific and Atlantic Oceans while small-ranged taxa are clustered in peripheral locations, suggesting that variation in speciation and extinction are important drivers of algal diversity patterns. Hypotheses about factors that regulate diversity contain underlying assumptions about the size and location of geographic ranges, in addition to predictions as to why species numbers will differ among regions. Yet these assumptions are rarely considered in assessing the validity of the prevailing hypotheses. I assess a suite of hypotheses, suggested to explain patterns of marine diversity, by comparing algal-richness patterns in combination with the size and location of algal geographic ranges, to the richness and range locations predicted by these hypotheses. In particular, the results implicate habitat areas and ocean currents as the most plausible drivers of observed diversity patterns.  相似文献   

15.
Basic to nearly any prediction concerning the behavior and structure of entire communities or of their components is knowledge of trophic connections among species. A major impediment to such understanding of soft-bottom benthos is methodological. Because none of the routinely available methods of food web analysis (e.g. visual gut content analysis, direct observation of feeding, tracer techniques) is generally suitable for examining all trophic interactions of benthic infauna, we rought to evaluate the potential of immunological methods for identifying predatorprey relationships in one typical, estuarine, intertidal sand flat. Whole-organism extracts of individual macro- and meiofaunal taxa were injected into rabbits to produce antisera of varying specificity. Double immunodiffusion precipitin tests of antiserum specificity revealed both phyletic and trophic relationships among 20 taxa. Using relatively unspecific antisera, preliminary analysis of the stomach contents of a few surface deposit-feeders and particle browsers was successful, giving positive identification of several trophic links which would otherwise have gone undetected. The production of taxon-specific antisera is expected to provide the methodological tool necessary to document the breadth of trophic connections in a marine benthic food web.  相似文献   

16.
In order to study the ecophysiological response of a natural diatom-dominated microbial mat to an enhanced level of ultraviolet-B radiation (UVBR), intact sediment cores from a shallow microtidal bay on the Swedish west coast were incubated in an outdoor flow-through system and exposed to either no UVBR or to an artificially enhanced level of UVBR. The microbial mat was cohesive and dominated by the large (≈ 400 μm) motile diatom Gyrosigma balticum. Functional response to UVBR was assessed by measuring carbon fixation (14C) and allocation of photosynthetic products. Sediment oxygen microprofiles were measured as indicators of the balance between the photosynthetic and respiratory activity of the community. Structural variables included biomass and composition of microalgae, pigment composition (HPLC), content of UV-absorbing compounds, and composition of fatty acids. An enhanced level of UVBR resulted in significant functional changes in the microalgal community. Significantly decreased carbon fixation and lower net oxygen production (as calculated from oxygen microprofiles) suggest that primary productivity in the type of microbial mat studied is potentially sensitive to an enhanced level of UVBR. The pattern of carbon allocation hinted a change as to the photosynthetically active part of the community when exposed to UVBR, indicating a differential sensitivity among algal cells. Despite significant functional effects, pigment or algal composition were not significantly affected by enhanced UVBR. The concentration of UV-absorbing compounds was low and did not increase at UVBR exposure. Due to the short duration of the experiment (4 d), a change in algal biomass or composition was not to be expected. Moreover, the thickness of the sampled sediment layer, may have contributed to the lack of observed structural effects of enhanced UVBR. Visual observations suggested that UVBR affected the motility of G. balticum. This study, as well as other experiments with a similar diatom mat, suggest that vertical migration is a key mechanism to be further studied in relation to UVBR exposure of diatom-dominated microbial mats. Received: 7 September 1996 / Accepted: 8 October 1996  相似文献   

17.
In distilled water, marine benthic algae immediately lose ions. This can be demonstrated by means of chloride titration or conductivity measurements. The rapidity and the complete reversibility of this process show that ion movements out of and into the free space are involved. When Laminaria saccharina thalli, exposed to a series of increasing NaCl-concentrations, are subsequently transferred into distilled water, the external concentration increases proportionally to rate of ion loss. Through its free space, the alga establishes an ionic equilibrium with its external medium. If the alga thallus is killed (20 sec boiling in isosmotic sea water), the extent of chloride loss is much higher. Because of thermal destruction of the osmotic space, the chloride can then escape from the entirc thallus. Since sublittoral algae die upon drying, chloride loss from dry thalli is much higher than that from wet thalli: this difference is small in littoral algae, which tolerate short periods of dryness. A close relationship exists between extent of chloride loss and degree of resistance to drying.  相似文献   

18.
Monitoring non-native plant richness is important for biodiversity conservation and scientific research. The species-area model (SA model) has been used frequently to estimate the total species richness within a region. However, the conventional SA model may not provide robust estimations of non-native plant richness because the ecological processes associated with the accumulation of exotic and native plants may differ. Because roads strongly dictate the distributions of exotic plants, we propose a species-accumulation model along roads (SR model), rather than an SA model, to estimate the non-native plant richness within a region. Using 270 simulated data sets, we compared the differences in performance between the SR and SA models. A decision tree based on prediction accuracy was created to guide model application, which was validated using field data from 3 national nature reserves in 3 different provinces in China. The SR model significantly outperformed the SA model when non-native species were restricted to the roadsides and the proportion of uncommon exotic species was small. More importantly, the SR model accurately estimated the non-native plant richness in all field sites with an error of <1 species per site. We believe our new model meets the practical need to efficiently and robustly estimate non-native plant richness, which may facilitate effective biodiversity conservations and promote research on non-native plant invasion and vegetation dynamics.  相似文献   

19.
Examination of the benthic nematode fauna of the soft surface sediments of a turtle grass (Thalassia testudinum König) bed in Biscayne Bay (Miami, Florida) has revealed a high degree of homogeneity exemplified by the dominance of four species out of approximately 100 nematode taxa from the area. The dominant species, Metoncholaimus scissus, Theristus fistulatus, Spirinia parasitifera and Gomphionema typica, regularly comprised between 87 and 95% of the total number of nematodes present in samples collected during the winter and spring of 1966. T. fistulatus showed an abundance of 56% over the course of the study, i.e., 160 samples collected over a period of 14 months. Maximal peaks in population densities were noted and correlated with physiographic alterations in the environment. The M. scissus population declined concurrent with changes in the community; at the same time, with accumulation of sediment, the Terschellingia longicaudata population increased. Ratios of species, and especially shifts in the dominantforms present, with repeated collections, are extremely useful indicators of important biological and physical changes in a particular environment. Analysis of distributional data on dominant species in 64 samples from eight closely approximated positions showed that observed temporal and spatial variations were not significant statistically at the 5% level. It is concluded that erroneous observations can be made from ecological studies based on field data derived without proper replication or consideration of seasonal factors. The latter as well as intrinsic variability within the particular locality itself contribute to the basic faunistic composition of benthic communities.This work was supported by Grant 12482 from the National Institute of Health to the Institute of Marine Science, University of Miami, and is a contribution (No. 819) from the Institute of Marine Science and from the Nematology Section, Entomology Research Institute, Research Branch, Canada Department of Agriculture, Ottawa.  相似文献   

20.
Edwards KF  Stachowicz JJ 《Ecology》2011,92(5):1094-1103
For sessile organisms, dispersal and recruitment are typically spatially stochastic, but there is little understanding of how this variability scales up to influence processes such as competitive coexistence. Here we argue that coexistence of benthic marine animals is enhanced by stochastic differences between species in the spatial distribution of larval settlement. Differentiation of settlement distributions among competitors results in intraspecifically aggregated settlement, which can reduce overall interspecific competition and increase overall intraspecific competition. We test for the components of this mechanism using a pair of subtidal invertebrates, and we find that the mean interspecific effect of the dominant competitor is substantially reduced by natural settlement variability. Using a simulation parameterized with experimental data, we find that variable settlement could play an important role in long-term coexistence between these species. This mechanism may apply broadly to benthic marine communities, which can be highly diverse and typically exhibit large settlement fluctuation over a range of scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号