共查询到12条相似文献,搜索用时 0 毫秒
1.
D.S. PowlsonA. Bhogal B.J. ChambersK. Coleman A.J. MacdonaldK.W.T. Goulding A.P. Whitmore 《Agriculture, ecosystems & environment》2012,146(1):23-33
Results from the UK were reviewed to quantify the impact on climate change mitigation of soil organic carbon (SOC) stocks as a result of (1) a change from conventional to less intensive tillage and (2) addition of organic materials including farm manures, digested biosolids, cereal straw, green manure and paper crumble. The average annual increase in SOC deriving from reduced tillage was 310 kg C ± 180 kg C ha−1 yr−1. Even this accumulation of C is unlikely to be achieved in the UK and northwest Europe because farmers practice rotational tillage. N2O emissions may increase under reduced tillage, counteracting increases in SOC. Addition of biosolids increased SOC (in kg C ha−1 yr−1 t−1 dry solids added) by on average 60 ± 20 (farm manures), 180 ± 24 (digested biosolids), 50 ± 15 (cereal straw), 60 ± 10 (green compost) and an estimated 60 (paper crumble). SOC accumulation declines in long-term experiments (>50 yr) with farm manure applications as a new equilibrium is approached. Biosolids are typically already applied to soil, so increases in SOC cannot be regarded as mitigation. Large increases in SOC were deduced for paper crumble (>6 t C ha−1 yr−1) but outweighed by N2O emissions deriving from additional fertiliser. Compost offers genuine potential for mitigation because application replaces disposal to landfill; it also decreases N2O emission. 相似文献
2.
Nobuhisa Koga Pete SmithJagadeesh B. Yeluripati Yasuhito ShiratoSonoko D. Kimura Manabu Nemoto 《Agriculture, ecosystems & environment》2011,144(1):51-60
Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for Japan's agriculture. In this context, changes in soil C stocks in northern Japan's arable farming area over the period of 1971-2010, specifically in the region's typical Andosol (volcanic ash-derived) and non-Andosol soils, were simulated using soil-type-specific versions of the Rothamsted carbon model (RothC). The models were then used to predict the effects, over the period of 2011-2050, of three potential management scenarios: (i) baseline: maintenance of present crop residue returns and green manure crops, as well as composted cattle manure C inputs (24-34 Mg ha−1 yr−1 applied on 3-55% of arable land according to crop), (ii) cattle manure: all arable fields receive 20 Mg ha−1 yr−1 of composted cattle manure, increased C inputs from crop residues and present C inputs from green manure are assumed, and (iii) minimum input: all above-ground crop residues removed, no green manure crop, no cattle manure applied. Above- and below-ground residue biomass C inputs contributed by 8 major crops, and oats employed as a green manure crop, were drawn from yield statistics recorded at the township level and crop-specific allometric relationships (e.g. ratio of above-ground residue biomass to harvested biomass on a dry weight basis). Estimated crop net primary production (NPP) ranged from 1.60 Mg C ha−1 yr−1 for adzuki bean to 8.75 Mg C ha−1 yr−1 for silage corn. For the whole region (143 × 103 ha), overall NPP was estimated at 952 ± 60 Gg C yr−1 (6.66 ± 0.42 Mg C ha−1 yr−1). Plant C inputs to the soil also varied widely amongst the crops, ranging from 0.50 Mg C ha−1 yr−1 for potato to 3.26 Mg C ha−1 yr−1 for winter wheat. Annual plant C inputs to the soil were estimated at 360 ± 45 Gg C yr−1 (2.52 ± 0.32 Mg C ha−1 yr−1), representing 38% of the cropland NPP. The RothC simulations suggest that the region's soil C stock (0-30 cm horizon), across all soils, has decreased from 13.96 Tg C (107.5 Mg C ha−1 yr−1) in 1970 to 12.46 Tg C (96.0 Mg C ha−1 yr−1) in 2010. For the baseline, cattle manure and minimum input scenarios, soil C stocks of 12.13, 13.27 and 9.82 Tg C, respectively, were projected for 2050. Over the period of 2011-2050, compared to the baseline scenario, soil C was sequestered (+0.219 Mg C ha−1 yr−1) by enhanced cattle manure application, but was lost (−0.445 Mg C ha−1 yr−1) under the minimum input scenario. The effect of variations of input data (monthly mean temperature, monthly precipitation, plant C inputs and cattle manure C inputs) on the uncertainty of model outputs for each scenario was assessed using a Monte Carlo approach. Taking into account the uncertainty (standard deviation as % of the mean) for the model's outputs for 2050 (5.1-6.1%), it is clear that the minimum input scenario would lead to a rapid decrease in soil C stocks for arable farmlands in northern Japan. 相似文献
3.
Matthew Warren Steve Frolking Zhaohua Dai Sofyan Kurnianto 《Mitigation and Adaptation Strategies for Global Change》2017,22(7):1041-1061
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2?ha?1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2?ha?1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2?ha?1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration. 相似文献
4.
Mark P. McHenry 《Mitigation and Adaptation Strategies for Global Change》2009,14(6):497-512
This research provides a synthesis of soil organic carbon (SOC) densities in a range of Australian soils and land use types
to decrease uncertainties in agricultural soil carbon (C) sequestration investments. This work provides information on existing
Australian C soil stocks, the relationships between SOC with various agricultural and forestry land use changes, and options
available for agriculturalists to cultivate and safeguard their C stocks. This work also includes recent developments in C
rights, soil C monitoring, and verification technologies and procedures now in use for C stock inventories. This review has
a special focus on known changes in SOC stocks, technological and methodological developments in the agricultural region of
southern Western Australia (WA). 相似文献
5.
6.
Vulnerability of land systems to fire: Interactions among humans,climate, the atmosphere,and ecosystems 总被引:3,自引:0,他引:3
Sandra Lavorel Mike D. Flannigan Eric F. Lambin Mary C. Scholes 《Mitigation and Adaptation Strategies for Global Change》2007,12(1):33-53
Fires are critical elements in the Earth System, linking climate, humans, and vegetation. With 200–500 Mha burnt annually,
fire disturbs a greater area over a wider variety of biomes than any other natural disturbance. Fire ignition, propagation,
and impacts depend on the interactions among climate, vegetation structure, and land use on local to regional scales. Therefore,
fires and their effects on terrestrial ecosystems are highly sensitive to global change. Fires can cause dramatic changes
in the structure and functioning of ecosystems. They have significant impacts on the atmosphere and biogeochemical cycles.
By contributing significantly to greenhouse gas (e.g., with the release of 1.7–4.1 Pg of carbon per year) and aerosol emissions,
and modifying surface properties, they affect not only vegetation but also climate. Fires also modify the provision of a variety
of ecosystem services such as carbon sequestration, soil fertility, grazing value, biodiversity, and tourism, and can hence
trigger land use change. Fires must therefore be included in global and regional assessments of vulnerability to global change.
Fundamental understanding of vulnerability of land systems to fire is required to advise management and policy. Assessing
regional vulnerabilities resulting from biophysical and human consequences of changed fire regimes under global change scenarios
requires an integrated approach. Here we present a generic conceptual framework for such integrated, multidisciplinary studies.
The framework is structured around three interacting (partially nested) subsystems whose contribute to vulnerability. The
first subsystem describes the controls on fire regimes (exposure). A first feedback subsystem links fire regimes to atmospheric
and climate dynamics within the Earth System (sensitivity), while the second feedback subsystem links changes in fire regimes
to changes in the provision of ecological services and to their consequences for human systems (adaptability). We then briefly
illustrate how the framework can be applied to two regional cases with contrasting ecological and human context: boreal forests
of northern America and African savannahs. 相似文献
7.
P. Sudha V. Ramprasad M. D. V. Nagendra H. D. Kulkarni N. H. Ravindranath 《Mitigation and Adaptation Strategies for Global Change》2007,12(6):1131-1152
This paper addresses methodological issues in estimating carbon (C) sequestration potential, baseline determination, additionality
and leakage in Khammam district, Andhra Pradesh, southern part of India. Technical potential for afforestation on cultivable
wastelands, fallow, and marginal croplands was considered for Eucalyptus clonal plantations. Field studies for aboveground and belowground biomass, woody litter, and soil organic carbon for baseline
and project scenarios were conducted to estimate the carbon sequestration potential. The baseline carbon stock was estimated
to be 45.3 t C/ha, predominately in soils. The additional carbon sequestration potential under the project scenario for 30 years
is estimated to be 12.8 t C/ha/year inclusive of harvest regimes and carbon emissions due to biomass burning and fertilizer
application. Considering carbon storage in harvested wood, an additional 45% carbon benefit can be accounted. The project
scenario has a higher benefit/cost ratio compared to the baseline scenario. The initial investment cost requirement, however,
is high and lack of access to investment is a significant barrier for adoption of agroforestry in the district.
相似文献
N. H. RavindranathEmail: |
8.
Kenneth T. Gillingham Steven J. Smith Ronald D. Sands 《Mitigation and Adaptation Strategies for Global Change》2008,13(7):675-701
In the coming century, modern bioenergy crops have the potential to play a crucial role in the global energy mix, especially
under policies to reduce carbon dioxide emissions as proposed by many in the international community. Previous studies have
not fully addressed many of the dynamic interactions and effects of a policy-induced expansion of bioenergy crop production,
particularly on crop yields and human food demand. This study combines an updated agriculture and land use (AgLU) model with
a well-developed energy-economic model to provide an analysis of the effects of bioenergy crops on energy, agricultural and
land use systems. The results indicate that carbon dioxide mitigation policies can stimulate a large production of bioenergy
crops, dependent on the level of the policy. This production of bioenergy crops can lead to several impacts on the agriculture
and land use system: decreases in forestland and unmanaged land, decreases in the average yield of food crops, increases in
the prices of food crops, and decreases in the level of human demand of calories.
相似文献
Steven J. Smith (Corresponding author)Email: |
9.
Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification 总被引:1,自引:0,他引:1
Bjørn Kløve Andrew Allan Guillaume Bertrand Elzbieta Druzynska Ali Ertürk Nico Goldscheider Sarah Henry Nusret Karakaya Timo P. Karjalainen Phoebe Koundouri Hans Kupfersberger Jens Kvœrner Angela Lundberg Timo Muotka Elena Preda Manuel Pulido-Velazquez Peter Schipper 《Environmental Science & Policy》2011,14(7):782-793
Groundwater in sufficient amounts and of suitable quality is essential for potable water supplies, crop irrigation and healthy habitats for plant and animal biocenoses. The groundwater resource is currently under severe pressure from land use and pollution and there is evidence of dramatic changes in aquifer resources in Europe and elsewhere, despite numerous policy measures on sustainable use and protection of groundwater. Little is known about how such changes affect groundwater dependent ecosystems (GDEs), which include various aquatic and terrestrial ecosystems above ground and inside the aquifer. Future management must take this uncertainty into account. This paper focuses on multiple aspects of groundwater science, policy and sustainable management. Examples of current management methods and practices are presented for selected aquifers in Europe and an assessment is made of the effectiveness of existing policies such as the European Water Framework Directive and the Habitat Directive in practice and of how groundwaters and GDEs are managed in various conditions. The paper highlights a number of issues that should be considered in an integrated and holistic approach to future management of groundwater and its dependent ecosystems. 相似文献
10.
The coupled SWAP-WOFOST model was used to study the effects of increasing salinity of groundwater, drought and water excess on grass production in The Netherlands. WOFOST simulates crop growth and SWAP simulates transport of water, solutes and heat in the vadose zone. The model was tested using several datasets from field experiments. We applied the models at regional scale where we quantified the impact of various groundwater salinity levels on grass growth and production using historical weather data (1971-2000). The salt concentrations in the subsoil were derived from the National Hydrological Instrument. The results show that salinity effects on grass production are limited. In wet years the excess rainfall will infiltrate the soil and reduce salt water seepage. In a next step we used future weather data for the year 2050, derived from 3 Global Circulation Models. From each model we used data from two CO2 emission scenarios. As expected higher temperatures increased drought stress, however, the production reduction as a result of salt water in the root zone is limited. Salt stress mainly occurred when irrigation was applied with saline water. The increased CO2 concentration in combination with the limited drought stress resulted in increasing simulated actual and potential yields. Overall conclusion for grassland in The Netherlands: drought stress is stronger than stress caused by water excess which on its turn is stronger than salinity stress. Future water demand for irrigation may increase by 11-19% and result in water scarcity if water supply is insufficient. 相似文献
11.
Humberto Blanco-Canqui A.J. SchlegelW.F. Heer 《Agriculture, ecosystems & environment》2011,144(1):107-116
No-till (NT) farming is considered as a potential strategy for sequestering C in the soil. Data on soil-profile distribution of C and related soil properties are, however, limited, particularly for semiarid regions. We assessed soil C pool and soil structural properties such as aggregate stability and strength to 1 m soil depth across three long-term (≥21 year) NT and conventional till (CT) experiments along a precipitation gradient in the central Great Plains of the USA. Tillage systems were in continuous winter wheat (Triticum aestivum L.) on a loam at Hutchinson and winter wheat-sorghum [Sorghum bicolor (L.) Moench]-fallow on silt loams at Hays and Tribune, Kansas. Mean annual precipitation was 889 mm for Hutchinson, 580 mm for Hays, and 440 mm for Tribune. Changes in profile distribution of soil properties were affected by differences in precipitations input among the three sites. At Hutchinson, NT had 1.8 times greater SOC pool than CT in the 0-2.5-cm depth, but CT had 1.5 times greater SOC pool in the 5-20-cm. At Hays, NT had 1.4 times greater SOC pool than CT in the 0-2.5-cm depth. Differences in summed SOC pool for the whole soil profile (0-1 m depth) between NT and CT were not significant at any site. The summed SOC pool with depth between NT and CT were only significant above the 5 cm depth at Hutchinson and 2.5 cm depth at Hays. At Hutchinson, NT stored 3.4 Mg ha−1 more SOC than CT above 5 cm depth. At Hays, NT stored 1.35 Mg ha−1 more SOC than CT above 2.5 cm depth. Moreover, NT management increased mean weight diameter of aggregates (MWDA) by 3 to 4 times for the 0-5-cm depth at Hutchinson and by 1.8 times for the 0-2.5-cm depth at Hays. It also reduced air-dry aggregate tensile strength (TS) for the 0-5-cm depth at Hutchinson and Hays and for the 0-2.5-cm depth at Tribune. The TS (r = −0.73) and MWDA (r = 0.81) near the soil surface were more strongly correlated with SOC concentration at Hutchinson than at Hays and Tribune attributed to differences in precipitation input. Results suggested NT impacts on increasing SOC pool and improving soil structural properties decreased with a decrease in precipitation input. Changes in soil properties were larger at Hutchinson (880 mm of precipitation) than at Hays and Tribune (≤580 mm). While NT management did not increase SOC pool over CT for the whole soil profile, the greater near-surface accumulation of SOC in NT than in CT was critical to the improvement in soil structural properties. Overall, differences in precipitation input among soils appeared to be the dominant factor influencing NT impacts on soil-profile distribution of SOC and soil structural properties in this region. 相似文献
12.
Global climate change threatens world food production via direct effects on plant growth and alterations to pest and pathogen prevalence and distribution. Complex relationships between host plant, pest, pathogen and environment create uncertainty particularly involving vector-borne diseases. We attempt to improve the understanding of the effects of climate change via a detailed review of one crop-vector-pathogen system.The bird cherry-oat aphid, Rhopalosiphum padi, is a global pest of cereals and vector of yellow dwarf viruses that cause significant crop losses in cereals. R. padi exhibits both sexual and parthenogenetic reproduction, alternating between crops and other host plants. In Australia, only parthenogenesis occurs due to the absence of the primary host, thus the aphid continuously cycles from grasses to cereals, allowing for continuous virus acquisition and transmission.We have reviewed the potential impact of future climate projections on R. padi population dynamics, persistence, abundance, dispersal and migration events as well as the interactions between vector, virus, crop and environment, all of which are critical to the behaviour and development of the vector and its ability to transmit the virus. We identify a number of knowledge gaps that currently limit efforts to determine how this pathosystem will function in a future climate. 相似文献