首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field data of physical properties in heterogeneous crystalline bedrock, like porosity and fracture aperture, is associated with uncertainty that can have a significant impact on the analysis of solute transport in rock fractures. Solutions to the central temporal moments of the residence time probability density function (PDF) are derived in a closed form for a solute Dirac pulse. The solutions are based on a model that takes into account advection along the fracture plane, diffusion into the rock matrix and sorption kinetics in the rock matrix. The most relevant rock properties including fracture aperture and several matrix properties as well as flow velocity are assumed to be spatially random along transport pathways. The mass transport is first solved in a general form along one-dimensional pathways, but the results can be extended to multi-dimensional flows simply by substituting the expected travel time for inert water parcels. Based on data obtained with rock samples taken at Asp? Hard Rock Laboratory in Sweden, the solutions indicate that the heterogeneity of the rock properties contributes to increasing significantly both the variance and the skewness of the residence time probability density function for a pulse travelling in a fracture. The Asp? data suggests that the bias introduced in the variance of the residence time PDF by neglecting the effect of heterogeneity of the rock properties on the radionuclide migration is very large for fractures thinner than a few tenths of a millimetre.  相似文献   

2.
Modelling radionuclide transport for time varying flow in a channel network   总被引:1,自引:0,他引:1  
Water flowrates and flow directions may change over time in the subsurface for a number of reasons. In fractured rocks flow takes place in channels within fractures. Solutes are carried by the advective flow. In addition, solutes may diffuse in and out of stagnant waters in the rock matrix and other stagnant water regions. Sorbing species may sorb on fracture surfaces and on the micropore surfaces in the rock matrix. We present a method by which solute particles can be traced in flowing water undergoing changes in flowrate and direction in a complex channel network where the solutes can also interact with the rock by diffusion in the rock matrix. The novelty of this paper is handling of diffusion in the rock matrix under transient flow conditions. The diffusive processes are stochastic and it is not possible to follow a particle deterministically. The method therefore utilises the properties of a probability distribution function for a tracer moving in a fracture where matrix diffusion is active. The method is incorporated in a three dimensional channel network model. Particle tracking is used to trace out a multitude of flowpaths, each of which consists of a large number of channels within fractures. Along each channel the aperture and velocity as well as the matrix sorption properties can vary. An efficient method is presented whereby a particle can be followed along the variable property flowpath. For stationary flow conditions and a network of channels with advective flow and matrix diffusion, a simple analytical solution for the residence time distribution along each pathway can be used. Only two parameter groups need to be integrated along each path. For transient flow conditions, a time stepping procedure that incorporates a stochastic Monte-Carlo like method to follow the particles along the paths when flow conditions change is used. The method is fast and an example is used for illustrative purposes. It is exemplified by a case where land rises due to glacial rebound. It is shown that the effects of changing flowrates and directions can be considerable and that the diffusive migration in the matrix can have a dominating effect on the results.  相似文献   

3.
Matrix diffusion is an important process for solute transport in fractured rock, and the matrix diffusion coefficient is a key parameter for describing this process. Previous studies have indicated that the effective matrix diffusion coefficient values, obtained from a large number of field tracer tests, are enhanced in comparison with local values and may increase with test scale. In this study, we have performed numerical experiments to investigate potential mechanisms behind possible scale-dependent behavior. The focus of the experiments is on solute transport in flow paths having geometries consistent with percolation theories and characterized by multiple local flow loops formed mainly by small-scale fractures. The water velocity distribution through a flow path was determined using discrete fracture network flow simulations, and solute transport was calculated using a previously derived impulse-response function and a particle-tracking scheme. Values for effective (or up-scaled) transport parameters were obtained by matching breakthrough curves from numerical experiments with an analytical solution for solute transport along a single fracture. Results indicate that a combination of local flow loops and the associated matrix diffusion process, together with scaling properties in flow path geometry, seems to be an important mechanism causing the observed scale dependence of the effective matrix diffusion coefficient (at a range of scales).  相似文献   

4.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.  相似文献   

5.
Transport and retardation of non-sorbing tritiated water and chloride and slightly sorbing sodium was studied in Syyry area SY-KR7 mica gneiss, in altered porous tonalite and in fresh tonalite. Experiments were performed using dynamic fracture and crushed rock column methods. Static batch method for sodium was introduced to compare retardation values from static and dynamic experiments. The 14C-PMMA method was used to study the pore structure of matrices. The pore aperture distribution was evaluated from Hg-porosimetry determinations and the surface areas were determined using the B.E.T. method. The flow characteristics and transport behavior of tracers were interpreted using a numerical compartment model for dispersion. The effect of matrix diffusion was calculated using an analytical solution to the advection-matrix diffusion problem in which surface retardation was taken into account. Radionuclide transport behavior in rock fractures was explained on the basis of rock structure.  相似文献   

6.
The prognosis for the remediation of contaminated fractured media is much worse than that for more homogeneous units. Fractures act as conduits for the flow of dense non-aqueous phase liquids (DNAPLs), while diffusion is responsible for the storage of dissolved mass in the surrounding matrix. A numerical model incorporating aqueous phase transport in a variable-aperture fracture and its surrounding matrix is developed and coupled with an existing two-phase flow model. The processes of transient two-phase flow, non-equilibrium dissolution, advective–dispersive transport in the fracture, and three-dimensional matrix diffusion are included in the model. Results from various investigations show that the DNAPL distribution is very sensitive to variations in aperture within a single fracture. Diffusion-controlled mass removal from both the matrix and from the hydraulically inaccessible zones within the fracture itself result in extremely large time frames for significant mass removal from these systems. Success in aqueous phase mass removal from the matrix is very sensitive to the effective fracture spacing. The hydraulic gradient in the fracture only affects the amount of water removed from the system, and does not greatly affect the amount of time required to remove the contaminant mass from the matrix. The ability to remove mass is somewhat sensitive to the porosity and effective matrix diffusion coefficient over the range of expected values.  相似文献   

7.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.  相似文献   

8.
Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from core samples. This suggests that: (i) the injection-withdrawal method is a viable tool for the investigation of general transport processes provided all relevant experimental conditions are considered and multiple conservative tracers are used; and (ii) for the conditions of the experiments conducted in this study, the dominant mechanism for exchange of solute between the fracture and surrounding medium is matrix diffusion.  相似文献   

9.
In fractured rocks with a porous rock matrix such as granites, radionuclides will flow with the water in the fracture network. The nuclides will diffuse in and out the rock matrix where they can sorb and be considerably retarded compared to the water velocity. A water parcel entering the network will mix and split at the fracture intersections and parts of the original parcel will traverse a multitude of different fractures. The flowrates, velocities, sizes and apertures of the fractures can vary widely. Normally one must solve the transport equations for every fracture and use the effluent concentration as inlet condition to the next fracture and so on. It is shown that under some weakly simplified conditions it suffices to determine one single parameter group containing information on the flow wetted surface that a water parcel contacts along the entire path. It is also shown how this can be obtained. Then, solving the transport equations only once for time and location along the path gives the concentration and nuclide flux of every nuclide in the chain everywhere along a path. The same solution actually is valid for every path in the network. This dramatically reduces the computation effort. The same approach can be used for models based on streamtubes.  相似文献   

10.
Measurements of groundwater velocity in discrete rock fractures   总被引:1,自引:0,他引:1  
Estimating groundwater velocity in fracture networks using a Darcy or cubic law calculation is complicated by the wide distribution of fracture aperture often found in these systems and by the difficulty in measuring hydraulic head in discrete fracture features. Although difficult to conduct in a fractured rock setting, the point dilution method can be utilized to collect direct measurements of groundwater velocity in individual fractures. To compare measured against calculated velocities, more than 100 point dilution experiments were conducted within a 35 x 35 m area of a single fracture and in discrete fracture features within a fracture network at a larger scale. The dilution experiments were conducted by isolating a fracture feature in a borehole, measuring the hydraulic aperture, and measuring the decay of an injected tracer due to the advective groundwater flux across the fracture. Groundwater velocity was estimated using the hydraulic aperture and the rate of decay of the injected tracer. Estimates of the local hydraulic gradient were calculated via the cubic law using the velocity estimate and the hydraulic aperture. The results of the tests conducted in the single fracture show variable (1 to 33 m/day) but on average higher velocities in comparison to that measured during a natural gradient tracer experiment conducted previously (in which the effects of matrix diffusion were accounted for) and to that which would be calculated using the cubic law. Based on these results, it was determined that the best estimate of the average groundwater velocity, at the scale of the measurement area used for the cubic law calculations, could only be obtained using the largest apertures in the aperture distribution. Variability of the velocity measurements was also observed over time. Increases in velocity were attributed to the effect of rainfall although concurrent increases in hydraulic gradient were not detected (likely within the tolerance of the measuring devices). The groundwater velocities measured in the fracture network varied over a wider range than at the scale of the single fracture (from 2 to 388 m/day). No correlation, however, was observed between the size of the fracture aperture and measured velocity.  相似文献   

11.
Breakthrough curves of 137Cs and tritiated water injected instantaneously into artificial fractures in Lac du Bonnet granite were analyzed using the analytical solution for a single rock-fracture system and assuming the linear sorption isotherm of the solute. Parameters of nuclide diffusion and sorption in rock matrices, obtained by fitting, varied depending on the flow velocity in the fractures. According to theoretical calculations, different fracture flow velocities lead to different diffusion distances of nuclides in matrices at the same injection volume. As microscopic inhomogeneity is considered to exist in the rock matrix, the average diffusion-sorption characteristics of the matrix within the diffusion distance may have varied with the fracture flow velocity. Surface sorption was marked in fractures that had relatively high matrix sorption-diffusion capacities. The phenomenon was interpreted using the theoretical relationships developed between the surface sorption, matrix sorption and pore diffusion coefficient, and the porosity of matrices.The effect of the nonlinear sorption of solute was examined by numerically solving model equations that incorporate the nonlinear isotherm. This incorporation may contribute to the reduction of deviations between theoretical and experimental BTC's.  相似文献   

12.
A series of laboratory tracer migration experiments in a single rock fracture have been performed, and the breakthrough curves have been interpreted using mathematical modelling. Discrepancies were observed between the experimental data and the predictions made using a simple advection-dispersion model. The potential reasons for these discrepancies have been investigated by applying more complex models: one model incorporates channelling of flow within the fracture, the other couples dispersion and advection in the fracture with rock-matrix diffusion. It is concluded that chanelling of flow can adequately explain the observed spreading behaviour; rock-matrix diffusion is not a significant mechanism influencing transport in these experiments.  相似文献   

13.
Some of the basic assumptions of the advection-dispersion model (AD-model) are revisited. This model assumes a continuous mixing along the flowpath similar to Fickian diffusion. This implies that there is a constant dispersion length irrespective of observation distance. This is contrary to most field observations. The properties of an alternative model based on the assumption that individual water packages can retain their identity over long distances are investigated. The latter model is called the multi-channel model (MCh-model). Inherent in the latter model is that if the waters in the different pathways are collected and mixed, the "dispersion length" is proportional to distance. The conditions for when non-mixing between adjacent streams can be assumed are explored. The MCh- and AD-models are found to have very similar residence time distributions (RTD) for Peclet numbers larger than 3. A generalized relation between flowrate and residence time is developed, including the so-called cubic law and constant aperture assumptions. The two models extrapolate very differently when there is strong matrix interaction. The AD-model could severely underestimate the effluent concentration of a tracer pulse and overestimate the residence time. The conditions are explored for when in-filling particles in the fracture will not be equilibrated but will act as if there was seemingly a much larger flow wetted surface (FWS). It is found that for strongly sorbing tracers, relatively small particles can act in this way for systems and conditions that are typical of many tracer tests. The assumption that the tracer residence time found by cautiously injecting a small stream of traced water represents the residence time in the whole fracture is explored. It is found that the traced stream can potentially sample a much larger fraction of the fracture than the ratio between the traced flowrate and the total pumped flowrate. The MCh-model was used to simulate some recent tracer tests in what is assumed to be a single fracture at the Asp? Hard rock laboratory in Sweden. Non-sorbing tracers, HTO and Uranin were used to determine the mean residence time and its variance. Laboratory data on diffusion and sorption properties were used to "predict" the RTD of the sorbing tracers. At least 30 times larger FWS or 1000 times larger diffusion or sorption coefficients would be needed to explain the observed BTCs. Some possible reasons for such behavior are also explored.  相似文献   

14.
Data from 90 tracer experiments performed in low-permeability fractured media have been studied to explore correlations among parameters controlling flow and transport. The original data had been interpreted by different authors using different models, which prevents direct comparison of their estimated parameters. In order to produce comparable parameters, the data have been reexamined using simple models (homogeneous domain, steady-state flow regime, single porosity). Specifically, hydraulic conductivity has been derived as the ratio of water flux to head gradient and apparent porosity as the ratio of water velocity to water flux; the former estimated from both first and peak arrival times. Hydraulic conductivity and porosity correlate along a straight line of slope 1:3 in log scale. While the regression is too noisy to be of predictive use, it lends some support to the use of a generalized cubic law. The fact that correlation for first arrival time porosity (0.77) is larger than for peak arrival porosity (0.62) suggests that first arrival is controlled by the same flow paths as hydraulic conductivity. Apparent porosity derived from peak arrival time is found to grow with travel time along a line of 0.55 slope (again log scale). The correlation coefficient ranges between 0.73 and 0.80 (depending on the data set) for hard rocks. The fact that this correlation is maintained when varying the flow rate at a given site leads us to suggest that it is caused by diffusion mechanisms. This conclusion is further supported by the increase of apparent porosity with the matrix porosity of the rock on which the experiments were performed.  相似文献   

15.
Processes that control the redox conditions in deep groundwaters have been studied. The understanding of such processes in a long-term perspective is important for the safety assessment of a deep geological repository for high-level nuclear waste. An oxidising environment at the depth of the repository would increase the solubility and mobility of many radionuclides, and increase the potential risk for radioactive contamination at the ground surface. Proposed repository concepts also include engineered barriers such as copper canisters, the corrosion of which increases considerably in an oxidising environment compared to prevailing reducing conditions. Swedish granitic rocks are typically relatively sparsely fractured and are best treated as a dual-porosity medium with fast flowing channels through fractures in the rock with a surrounding porous matrix, the pores of which are accessible from the fracture by diffusive transport. Highly simplified problems have been explored with the aim to gain understanding of the underlying transport processes, thermodynamics and chemical reaction kinetics. The degree of complexity is increased successively, and mechanisms and processes identified as of key importance are included in a model framework. For highly complex models, analytical expressions are not fully capable of describing the processes involved, and in such cases the solutions are obtained by numerical calculations. Deep in the rock the main source for reducing capacity is identified as reducing minerals. Such minerals are found inside the porous rock matrix and as infill particles or coatings in fractures in the rock. The model formulation also allows for different flow modes such as flow along discrete fractures in sparsely fractured rocks and along flowpaths in a fracture network. The scavenging of oxygen is exemplified for these cases as well as for more comprehensive applications, including glaciation considerations. Results show that chemical reaction kinetics control the scavenging of oxygen during a relatively short time with respect to the lifetime of the repository. For longer times the scavenging of oxygen is controlled by transport processes in the porous rock matrix. The penetration depth of oxygen along the flowpath depends largely on the hydraulic properties, which may vary significantly between different locations and situations. The results indicate that oxygen, in the absence of easily degradable organic matter, may reach long distances along a flow path during the life-time of the repository (hundreds to thousands of metres in a million years depending on e.g. hydraulic properties of the flow path and the availability of reducing capacity). However, large uncertainties regarding key input parameters exist leading to the conclusion that the results from the model must be treated with caution pending more accurate and validated data. Ongoing and planned experiments are expected to reduce these uncertainties, which are required in order to make more reliable predictions for a safety assessment of a nuclear waste repository.  相似文献   

16.
Water-conducting faults and fractures were studied in the granite-hosted Asp? Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours-days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption K(d)s are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.  相似文献   

17.
Water-conducting faults and fractures were studied in the granite-hosted Äspö Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175].The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments.While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.  相似文献   

18.
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks.  相似文献   

19.
We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement experiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create "channel" or "barrier" structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity U(→). In the "channel" geometry, the resistance displays an initial linear variation followed by a tail part which reflects the velocity contrast between slow and fast flow channels. In the "barrier" geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple flow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement.  相似文献   

20.
Transport experiments with colloids and radionuclides in a shear zone were conducted during the Colloid and Radionuclide Retardation experiment (CRR) at Nagra's Grimsel Test Site. Breakthrough curves of bentonite colloids and uranine, a non-sorbing solute, were measured in an asymmetric dipole flow field. The colloid breakthrough is earlier than that of uranine. Both breakthrough curves show anomalously long late time tails and the slope of the late time tails for the colloids is slightly higher. Anomalous late time tails are commonly associated with matrix diffusion processes; the diffusive interaction of solutes transported in open channels with the adjacent porous rock matrix or zones of stagnant water. The breakthrough curves for different colloid size classes are very similar and show no signs of fractionation due to their (size-dependent) diffusivity. It is proposed that tailing of the colloids is mainly caused by the structure of the flow field and that for the colloid transport, matrix diffusion is of minor importance. This has consequences for the interpretation of the uranine breakthrough. Comparisons of experimental results with numerical studies and with the evaluation of the colloid breakthrough with continuous time random theory imply that the tailing in the conservative solute breakthrough in this shear zone is not only caused by matrix diffusion. Part of the tailing can be attributed to advective transport in fracture networks and advection in low velocity regions. Models based on the advection-dispersion equation and matrix diffusion do not properly describe the temporal and spatial evolution of colloid and solute transport in such systems with a consistent set of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号