首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ozone flux-response relationship for wheat   总被引:2,自引:0,他引:2  
The concentrations of heavy metals in the fine fraction (<63 microm) of 19 surficial sediment samples from the border region of Baja California (Mexico) and California (USA) were determined. The concentration ranges (in microg g(-1)) of the metals were: Cu, 4.9-23; Zn, 39-188; Ni, 16-44; Cr, 56-802; Pb, 6-21; Cd, 0.08-0.64; Ag, 0.01-0.28; and Mn, 392-1506; the intervals (percentage) for Fe and Al were 1.36-4.6 and 3.61-8.55, respectively. The heavy metals in these sediments indicate a relative enrichment of Cr (>3000%), Zn (>350%), Ni (>300%) and Cu (>150%) off the wastewater outfall at Punta Bandera in Tijuana, Baja California, with respect to non-polluted sediments of the region. Pb, Cd and Ag have low concentrations off the same outfall and enrichment factors are generally lower than 300% (Pb) and lower than 150% (Cd and Ag). This suggests that these metals have a different origin, or that they are controlled by a different geochemical mechanism than the former. The concentrations of Mn, Fe and Al occurred within ranges typical for coastal areas and probably reflect the mineralogical composition of the sediments of the region.  相似文献   

2.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

3.
Sandroni V  Migon C 《Chemosphere》2002,47(7):753-764
Atmospheric fluxes of six trace metals (Cd, Cr, Cu, Ni, Pb and Zn) with Al as a crustal reference were measured at Cap Ferrat (French Riviera) between February 1997 and July 1998. An original sampling protocol enabled the separation of labile (seawater at pH 2) and residual fractions in the total atmospheric input. Median acid-labile fractions were 91%, 69%, 83%, 84%, 97% and 98% of the total for Cd, Cr, Cu, Ni, Pb and Zn, respectively. Under the conditions used, lability of individual metals is related to the anthropogenic component of the samples. Enrichment factors and anthropogenic fraction are estimated for each metal. Some interannual changes are investigated (Pb, Zn). The observed increase of Zn inputs may be linked to local input from the Nice district waste plant (commissioned in 1988), 6.5 km away.  相似文献   

4.
5.
Total and extractable concentrations of Cu, Pb, and Zn were determined in surface sediments of west Chaohu Lake (China) by HCl-HNO3-HF-HClO4 digestion and an optimized BCR sequential extraction procedure, respectively. The metal pollution was evaluated by the enrichment factor approach, and the potential eco-risk was evaluated by the sediment quality guideline (SQG) and risk assessment code (RAC) assessments. The results indicated that both total and extractable metal concentrations were highly variable and were affected by sediment properties, even though the sediments were predominantly composed of <63-μm particles (>89 %). Enrichment factors of the metals based on the total and extractable concentrations all showed higher values in the northern lake area and decreasing values towards the south. This distribution indicated an input of anthropogenic metals via the Nanfei River. Anthropogenic Cu, Pb, and Zn in surface sediments showed comparable values for each metal based on the total and extractable concentrations, suggesting that anthropogenic Cu, Pb, and Zn resided predominantly in the extractable fractions. Sediment Cu had low eco-risk, and Pb and Zn had medium eco-risk by the SQG assessment, whereas the eco-risk rankings of Cu, Pb, and Zn were medium, low, and low–high, respectively, by the RAC assessment. Referencing to the labile (dilute acid soluble) metal concentrations, we deduced that the eco-risk of Cu may be largely overestimated by the RAC assessment, and the eco-risk of Pb may be largely overestimated by the SQG assessment. Overall, sediments Cu and Pb may pose low eco-risk, and Zn may pose low–high eco-risk.  相似文献   

6.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

7.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

8.
The magnitude and ecological relevance of metal pollution of the middle Po river deriving from the River Lambro tributary was investigated by applying different (complementary) sediment quality assessment approaches: (1) comparisons of concentrations with regional reference data, and (2) comparisons with consensus-based sediment quality guidelines (SQGs), as well as by investigations of the partitioning patterns of target heavy metals (Cd, Cu, Ni, Pb, Zn). Total metal concentrations in the surficial sediments revealed significant pollution inputs on the whole river stretch investigated, with a distinct peak at the inlet of the River Lambro. Based on the geoaccumulation index of target heavy metals, the middle reach of River Po has to be considered as moderately polluted with Cd (1相似文献   

9.
The rapid economic development in the Pearl River Delta (PRD) region in South China in the last three decades has had a significant impact on the local environment. Estuarine sediment is a major sink for contaminants and nutrients in the surrounding ecosystem. The accumulation of trace metals in sediments may cause serious environmental problems in the aquatic system. Thirty sediment cores were collected in the Pearl River Estuary (PRE) in 2000 for a study on trace metal pollution in this region. Heavy metal concentrations and Pb isotopic compositions in the four 210Pb-dated sediment cores were determined to assess the fluxes in metal deposits over the last one hundred years. The concentrations of Cu, Pb and Zn in the surface sediment layers were generally elevated when compared with the sub-surface layers. There has been a significant increase in inputs of Cu, Pb and Zn in the PRE since the 1970s. The results also showed that different sampling locations in the estuary received slightly different types of inputs. Pb isotopic composition data indicated that the increased Pb in the recent sediments was of anthropogenic origin. The results of trace metal influxes showed that about 30% of total Pb and 15% of total Zn in the sediments in the 1990s were from anthropogenic sources. The combination of trace metal analysis, Pb isotopic composition and 210Pb dating in an estuary can provide vital information on the long-term accumulation of metals in sediments.  相似文献   

10.
Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability.  相似文献   

11.
River sediment at a disused lead-zinc mine was analysed to provide an understanding of the chemical nature of the source term for contaminated sediment exported from the site. Changes in concentration and geochemical associations of Pb and Zn were measured using aqua regia digestion and the BCR sequential extraction procedure. Sediment in the immediate vicinity of the mine was highly contaminated with Pb (max. c. 11,000 mg kg−1) and Zn (max. c. 30,000 mg kg−1), but these values declined rapidly within 1 km of the mine due to dilution and hydraulic sorting. Lead fractionation changed from being predominantly in the reducible fraction to being in the acetic acid-extractable fraction, whereas Zn was predominantly in the residual fraction. This material is transported as fine sediment in the river system.  相似文献   

12.
The sources and sinks of dissolved and particulate Pb, Cu and Zn were determined for the main basin of Puget Sound to understand the effect man has had on metal concentrations in both the water column and in the sediments. Municipal, industrial and atmospheric sources contributed about 66% of the total Pb added to the main basin of Puget Sound during the early 1980s. Advective inputs were the major sources of total Cu and Zn (approximately 40%) while riverine and erosional sources contributed about 30%. The discharge of the particle-bound trace metals from rivers minimized the influence of particulate anthropogenic sources, which constituted 50%, 23% and 18% of the total particulate Pb, Cu and Zn inputs, respectively. While advective transport was the major source of dissolved Cu and Zn (approximately 60% of all dissolved inputs), industrial, municipal and atmospheric inputs contributed about 85%, 30% and 38% of the dissolved Pb, Cu and Zn inputs, respectively. The sources of dissolved and particulate Cu and Zn were comparable with the sinks within the errors of the analyses indicating their quasi-conservative nature. Advection removed about 60% of the total Cu and Zn added to the main basin while 40% was deposited in the sediments of Puget Sound. Because of this quasi-conservative nature of Cu and Zn, anthropogenic inputs of Cu and Zn were dispersed from the system more than they were contained within main basin sediments. About 75% of the dissolved Pb discharged into the main basin of Puget Sound was lost from the dissolved phase and was balanced by a similar gain in the particulate phase. Because of this extensive scavenging and the effective retention of particles within the main basin, about 70% of the total Pb added to the main basin was retained within its sediments. These separate mass balances have utility in management decisions because they show the relative contributions from different sources and demonstrate whether the influences of dissolved and particulate inputs are reflected solely in the water column or the sediments, respectively.  相似文献   

13.
Sixty-four surface sediment samples and seven cored samples were collected from the partially closed bay of Jurujuba Sound, an inlet of Guanabara Bay in Southeast Brazil. Analysis of metals, including Pb, Zn, Ni, Cu and Cr, shows levels consistent with those typically found in urbanised and industrialised estuarine environments. Metal enrichment is concentrated around the inshore margin of the Sound and is significantly in excess of background, geological concentrations observed in basal muds from the seven cores. In the absence of industrialisation within the steep, but limited catchment that feeds into the Sound, the metal enrichment, particularly of Pb, Zn and Cu, is ascribed to the uncontrolled discharge of untreated sewage waste and urban surface runoff. This has increased markedly since the beginning of rapid urbanisation following the linking of the area by bridge to Rio de Janeiro in 1974.  相似文献   

14.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

15.
The degree of heavy metal contamination in the fine-grained (<63 microm) and sand-sized (2 mm-63 microm) fractions of surface sediments in 18 different mangrove swamps (144 random samples) in Hong Kong was examined. Higher concentrations of heavy metals were found in the fine-grained than the sand-sized fractions of the sediment; however, the differences between these two fractions became less significant when the swamp was more contaminated. The principal component analyses show that the 18 mangrove swamps, according to the median concentrations of total heavy metals, were clustered into four groups. The first group included three mangrove swamps in Deep Bay region which are seriously contaminated, with heavy metal concentrations in sediments around 80 microg g(-1) Cu, 240 microg g(-1) Zn, 40 microg g(-1) Cr, 30 microg g(-1) Ni, 3 microg g(-1) Cd and 80 microg g(-1) Pb. The second cluster, made up of another four swamps distributed in different geographical locations (two in Sai Kung district and two in Tolo region), also had elevated levels of Cu, Pb, Ni and Cr in the sediments. Field observation reveals that these seven stands received industrial, livestock and domestic sewage as well as pollution from mariculture activities, suggesting that anthropogenic input is the main source of heavy metal contamination in Hong Kong mangroves. The sediments from other mangrove swamps were relatively uncontaminated.  相似文献   

16.
As already done for aerosols, natural and anthropogenic Pb, Cd, Cu, and Zn concentrations in rainwater have been separated by a statistical numerical method. The natural part is found to strongly decrease from aerosol to rainwater: from 10–20% to 1% for Pb, Cu and Zn, and from 0.9% to 0.6% for Cd. The mean natural and anthropogenic levels in total atmospheric deposition is estimated.  相似文献   

17.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

18.
Atmospheric concentrations of Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb are reported for 59 weekly air filter samples collected over the Kiel Bight. The contributions of sea salt, mineral dust and anthropogenic emissions to each of these elements were assumed to be represented by the concentrations of indicator elements, which were Na, Al and Zn, respectively. Based on this assumption a multiple regression analysis was applied to the concentration data. The results showed that atmospheric sea salt contributed significantly only to Sr and, of course, Na. Considerable portions of Al, K, Ca, Ti, Cr, Mn, Fe, Rb, Sr and Ba were derived from mineral dust. Anthropogenic sources were responsible for total V, Ni, Cu, Zn, As and Pb, and there was an anthropogenic component for most of the other elements.Moreover, the anthropogenic contribution was characterized by a nearly constant composition with respect to Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Rb, Sr, Ba and Pb, indicating that trace metals over the Kiel Bight are mainly derived from one source area. This conclusion was confirmed by correlating anthropogenic trace metal concentrations with the wind direction. A 40° wind sector directed to the south of the sampling site was identified as the major pathway for the transport of anthropogenic trace metals to the Kiel Bight.  相似文献   

19.
Median atmospheric concentrations of Pb, Br, S, As, Se, and particulate matter (PM) decreased, and median concentrations of Sb, Cu, Zn, Fe, Ca, Cr and Ba increased in urban aerosol in downtown Budapest between 1996 and 2002. The changes in Pb and Br concentrations were unambiguously attributed to the phasing out of leaded gasoline. The increments were mainly related to and explained by non-exhaust vehicular emissions. The mechanical wear of asbestos-free brake linings of road vehicles contributed to the concentration of Cu and Sb on average by 69% and 66%, respectively in the PM10 size fraction. Tire rubber abrasion was a major source for atmospheric Zn; on average, non-crustal sources accounted for 67% of Zn in the PM10 size fraction. Contribution of the tire wear component to the PM10 mass was estimated to be 6% at most, while its contribution to organic aerosol was of the order of 15%.  相似文献   

20.
Lee CL  Song HJ  Fang MD 《Chemosphere》2000,41(6):889-899
This work analyzes surface sediment samples collected from 40 stations along the Kaohsiung coast in southern Taiwan for chlorobenzenes (CBs), hexachlorobutadiene (HCBD) and heavy metals (Cu, Zn, Pb, Cd, Ni, Fe, Mn and Cr). The highest CBs concentrations are recorded in station T7-15 (about 10 km west off the outlet of Da-lin-pu ocean outfall pipe), with total di-, tri-, tetra-, penta- and hexa-chlorobenzenes concentrations of 290.5, 117.1, 64.5, 15.7 and 22.3 ng/g, respectively. The major pollution source of HCBD is most likely located in the Tso-yin ocean outfall field; while the Dah-lin-pu ocean outfall field and Kao-ping Chi estuary, located in the southern portion of Kaohsiung coast, are the major contributors of hexachlorobenzene. The concentration of CBs congeners correlate fairly well with each other, as do metals. However, concentrations of organics (CBs and HCBD) did not correlate with metals. This finding implies that the pollution characteristics of organics and heavy metals in this highly utilized coastal zone markedly differ from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号