共查询到13条相似文献,搜索用时 11 毫秒
1.
A Study of Physicomechanical and Morphological Properties of Starch/Poly(vinylalcohol) Based Films 总被引:2,自引:0,他引:2
Dipa Ray Papri Roy Suparna Sengupta Siba Prasad Sengupta Amar K. Mohanty Manjusri Misra 《Journal of Polymers and the Environment》2009,17(1):56-63
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films
were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another
set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope
(SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the
films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology
and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between
the various chemical components of the films. 相似文献
2.
Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization 总被引:1,自引:0,他引:1
Emmanuelle Schwach Jean-Luc Six Luc Avérous 《Journal of Polymers and the Environment》2008,16(4):286-297
Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused
scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations
due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material
biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility
between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature.
However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies:
in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of
PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares
the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing
behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with
no decrease in elongation at failure. 相似文献
3.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption. 相似文献
4.
The Effect of Masterbatch Addition on the Mechanical, Thermal, Optical and Surface Properties of Poly(lactic acid) 总被引:1,自引:0,他引:1
F. Byrne P. G. Ward J. Kennedy N. Imaz D. Hughes D. P. Dowling 《Journal of Polymers and the Environment》2009,17(1):28-33
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for
petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have
however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt
to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches.
The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties
of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction).
There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning
calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an
associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition
of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures
of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in
PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches. 相似文献
5.
Mahesh A. Kotnis Gregory S. O'Brien J. L. Willett 《Journal of Polymers and the Environment》1995,3(2):97-105
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned. 相似文献
6.
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations. 相似文献
7.
Thermal and mechanical properties of poly(lactic Acid) and poly(ethylene/butylene Succinate) blends 总被引:2,自引:0,他引:2
In this study, blends of poly (lactic acid) (PLA) with poly(ethylene/butylene succinate) (Bionolle) have been investigated
for their thermal and mechanical properties as a function of the concentration of Bionolle. Differential scanning calorimetry
(DSC), dynamic mechanical analysis (DMA), and tensile tests were used to characterize the blends. From the results of the
DMA and DSC, it was found that this blend system was not miscible within the compositions studied. DSC results showed that
adding Bionolle aids in crystallization of PLA. It was observed that increasing the Bionolle concentration led to a slight
increase in the strain-at-break of the blends but a decrease in the Young’s modulus and ultimate tensile strength. Biaxially
oriented films showed an increase in tensile strength, modulus, and strain-at-break. 相似文献
8.
Nugraha E. Suyatma Alain Copinet Lan Tighzert Veronique Coma 《Journal of Polymers and the Environment》2004,12(1):1-6
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA. 相似文献
9.
Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect of Fiber Type and Impact Modifier 总被引:1,自引:0,他引:1
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence
of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene
(SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile
strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties
among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of
the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change
of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA)
and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites
filled with agricultural fibers had properties comparable with those of PVC/wood composite. 相似文献
10.
Photodegradation and Biodegradation Study of a Starch and Poly(Lactic Acid) Coextruded Material 总被引:1,自引:0,他引:1
Alain Copinet Céline Bertrand Antoine Longieras Veronique Coma Yves Couturier 《Journal of Polymers and the Environment》2003,11(4):169-179
To simulate the behavior of agricultural mulch coextruded poly(lactic acid)(PLA)/starch films, two stages were carried out. The first was an ultraviolet treatment (UV) at 315 nm, during which glass transition temperature Tg, weight, and molecular weight (MW) decreased and a separation between PLA and starch phase was observed. For the second stage, the mineralization of the carbon of the material was followed using the ASTM (D 5209–92 and 5338–92) and ISO/CEN (14852 and 14855) standard procedures. To measure the biodegradability of polymer material, the assessment of the carbon balance allowed determination of the distribution between the carbon rate used to the biomass synthesis or the respiration process (released CO2), as well as the dissolved organic carbon into the culture medium and the carbon in the residual insoluble material. The influence of the nature of the medium and the standardized procedures on the final rate of biodegradation was investigated. Whatever the standardized method, the biodegradation percentage was significantly stronger in liquid medium (92.4–93.4) than on inert medium (80–83%). In the case of the compost process, only released CO2 was measured and corresponded to 79.1–80.3%. 相似文献
11.
D. Goldberg 《Journal of Polymers and the Environment》1995,3(2):61-67
Since the early 1970s, it has been known that exposure of poly(caprolactone) (PCL) to a variety of microorganisms results in biodegradation of this polymer. Besides the ability of PCL to be utilized as a carbon source for microorganisms, it has been demonstrated that, during degradation, carbon dioxide is generated. Soil burial and compost experiments have shown that chain scission of the PCL backbone occurs, mechanical properties of articles prepared from PCL are reduced rapidly, and significant weight loss occurs in a short time period. This inherent biodegradability of PCL, in combination with its ability to be converted by conventional extrusion equipment, allows for the preparation of biodegradable articles that have utility.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts. 相似文献
12.
V. L. Finkenstadt C.-K. Liu P. H. Cooke L. S. Liu J. L. Willett 《Journal of Polymers and the Environment》2008,16(1):19-26
Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated
into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic
acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile
strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms
for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA
composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized
SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous
two phase system.
相似文献
V. L. FinkenstadtEmail: |
13.
Shadpour Mallakpour Ahmadreza Nezamzadeh Ezhieh 《Journal of Polymers and the Environment》2018,26(7):2813-2824
A series of bio-nanocomposites (BNC)s were fabricated through solution casting method. At first, the surfaces of ZrO2 NPs were functionalized with citric acid and Vitamin C as green modifier agents. Then, PVA as polymer matrix was embedded with different contents (4, 8 and 12 wt%) of modified ZrO2 (m-ZrO2) NPs with the aim of ultrasonic irradiation process. The resulting BNCs were studied by various techniques. Thermal stability of obtained BNCs was enhanced after NPs’ addition to the PVA matrix. Optical activity of these new BNCs makes them potential candidate for UV shielding material. Lastly, the tensile strengths of the BNCs were increased in comparison to the pure PVA. 相似文献