首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope (SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between the various chemical components of the films.  相似文献   

2.
Several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers were prepared and characterized. Cohesive and flexible cast films were obtained by blending lignocellulosic fibers derived from orange waste and PVA with or without cornstarch. Films were evaluated for their thermal stability, water permeability and biodegradation properties. Thermogravimetric analysis (TGA) indicated the suitability of formulations for melt processing, and for application as mulch films in fields at much higher temperatures. Composite films were permeable to water, but at the same time able to maintain consistency and composition upon drying. Chemical crosslinking of starch, fiber and PVA, all hydroxyl functionalized polymers, by hexamethoxymethylmelamine (HMMM) improved water resistance in films. Films generally biodegraded within 30 days in soil, achieving between 50–80% mineralization. Both starch and lignocellulosic fiber degraded much more rapidly than PVA. Interestingly, addition of fiber to formulations enhanced the PVA degradation.  相似文献   

3.
The effect of crosslinkers on the biodegradation behavior of starch/polyvinyl alcohol (PVA) blend films was investigated by weight loss study, Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Starch/PVA films were prepared by solution casting method and 5 weight% of four different crosslinking agents like epichlorohydrin, formaldehyde, zinc oxide and borax were used in four different sets to crosslink the films. These crosslinked starch/PVA films were biodegraded in compost. Weight loss study showed that crosslinking retarded the biodegradation of the films in the first 15?days, but after that, there was a significant increase in weight loss. The DSC analysis revealed that the consumption of starch and consequent rearrangement of the PVA molecules were distinctly different in the crosslinked films due to the effect of different crosslinking agents.  相似文献   

4.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

5.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

6.
In this study, the hydrolytic degradation of Poly(lactic acid) (PLA) and acetylated PLA (PLA-Ac)–clay nanocomposites were investigated. The organo clay was obtained by ion exchange reaction using cetyl tri methyl ammonium bromide (CTAB). Nanocomposites containing 2, 5 and 8% mass ratio of organo clay (CTAB-O) were prepared. PLA and its organo clay nanocomposites were characterized by scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray diffraction (XRD) to determine the morphology before and after hydrolytic degradation. Fourier transform infrared (FTIR) analyses of PLA and PLA-Ac were also obtained. The hydrolytic degradation of polymers and their composites were investigated in the phosphate buffered saline solution (PBS). The results showed that controlled hydrolytic degradation was observed in the samples with end group modification of PLA. While weight loss of PLA films was 28%, that of PLA-Ac films was 18% after 60 days degradation time. The weight loss was obtained as 29.5 and 25.5% for PLA-5 wt% organo clay (PLA/5CTAB-O) and PLA-Ac-5 wt% organo clay (PLA-Ac/5CTAB-O) nanocomposites films, respectively. It was also observed that thermal degradation of PLA-Ac was much more than that of PLA. Hydrolytic degradation increased depending on organo clay content. The end group modificated PLA results in controlled hydrolytic degradation. While hydrolytic degradation in polymer films occurred as surface erosion, bulk erosion was observed in composite films.  相似文献   

7.
Depending on the modifications proposed, chitosan films present different characteristics, for instance correlated to hydrophilicity, chemical and mechanical properties. The aim of this study was to evaluate the influence of glutaraldehyde crosslinking and an alkaline post-treatment with NaOH on the characteristics of chitosan based films. Films were obtained by casting and characterized by thickness, swelling degree, mechanical and thermal properties and chemical structure. The water vapor permeability (WVP) was also evaluated for food packaging application. It was observed that crosslinking and NaOH post-treatment have great influence on the chitosan films characteristics. Crosslinking reduced the swelling degree of films and increased its fragility, whereas NaOH treatment also reduces the swelling degree and changes mechanical properties, acting in the same way as a crosslinker. The WVP analyses showed that the basic treatment could substitute the glutaraldehyde crosslinking for film water stability, without greatly compromising the barrier properties of chitosan based films.  相似文献   

8.
The composites consisting of poly(vinyl alcohol), horn meal, rapeseed cake, glycerol and phosphogypsum were proposed for the encapsulation of mineral fertilizers. Poly(vinyl alcohol) was used as a binder. The other components making ca. 70% of the mass of the composites were waste materials or by-products. They contain phosphorus, nitrogen, calcium, potassium and sulphur, which are useful nutrients for plants. The effect of the amount of glycerol and of the composition of the mixture of the fillers on the mechanical, sorption properties, water vapour permeability, solubility in water, dimensional stability of the composite films was studied. The addition of phosphogypsum and increase of the concentration of glycerol in the composites lead to the decrease of the tensile strength, water vapour permeability and to the increase of elongation at break and of the solubility of the composite films in water. The composites prepared were used for encapsulation of fertilizers. It was established that encapsulation resulted in the increase of the time of release of the fertilizers. In addition, encapsulation improved mechanical properties of the fertilizers. The fertilizer granules were coated with composite films and tested in the cultivation of tomato sprouts. They showed considerable positive effect on the development of the roots of the plants.  相似文献   

9.
In this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of 35 wt% of crude glycerol-based polyol had reduced average cell size by more than 30% and slightly increased closed cell content, simultaneously reducing thermal conductivity coefficient of foam by 12% and inhibiting their thermal aging. Applied modifications showed also positive impact on the mechanical performance of rigid foams. Increase of crosslink density resulted in enhancement of compressive strength by more than 100%. Incorporation of prepared biopolyol resulted in enhancement of thermal stability and changes in degradation pathway. Up to 35 wt% share of crude glycerol-based polyol, foams showed similar flammability as reference sample, which can be considered very beneficial from the environmental point of view.  相似文献   

10.
Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

11.
Poly(3-hydroxybutyrate) (PHB) was evaluated in blends with poly(ethyleneglycol) (PEG) of different weight average molecular weight (Mw = 300, 600, 1,000 and 6,000). Irradiation of the PHB/PEG films was carried out to different levels of irradiation doses (5 and 10 kGy) and the effects were investigated talking into consideration: thermal properties by differential scanning calorimetry (DSC), perforation resistance, water vapor transmission rate and biodegradation in simulated soil. The addition of plasticizer alters thermal stability and crystallinity of the blends. The improvement in perforation resistance due to irradiation was regarded to be a result of the crosslinking effect. Also, biodegradation assays resulted in mass retention improvements with increases in PEG molar masses, PEG concentration and irradiation dose. The irradiation process was shown to hamper the biodegradation mechanism.  相似文献   

12.
This is, to our knowledge, the first study of wheat-gluten-based nanocomposite films prepared by a solvent-free extrusion process. Wheat gluten/montmorillonite nanocomposite films were obtained in a single screw-extruder using urea as a combined denaturant and plasticizer. The oxygen permeability and water vapor transmission rate of the films decreased by respectively factors of 1.9 and 1.3 when 5 wt.% clay was added. At the same time, the stiffness increased by a factor of 1.5, without any critical loss of extensibility. Field emission scanning electron microscopy (FE-SEM) and Energy-dispersive X-ray analysis indicated that the clay particles were layered mainly in the plane of the extruded film. It was possible to identify individual platelets/tactoids with FE-SEM and, together with findings from transmission electron microscopy, atomic force microscopy and X-ray diffraction, it was concluded that the clay existed as individual clay platelets, intercalated tactoids and agglomerates. Thermogravimetric analysis showed that the thermal stability of the extrudates was improved by the addition of clay.  相似文献   

13.
Poly(vinyl alcohol) (PVA) hydrogels were chemically cross-linked with/without different cross-linkers such as glutaraldehyde and epichlorohydrin, in the presence of a catalyst, or activator (potassium hydroxide) to produce three types of hydrogels. The structures of PVA and the prepared gel types were determined by FTIR spectroscopy, the mechanical and thermal properties, of these hydrogels were examined. The effects of different pH values and temperatures on the swelling properties of the prepared gels were examined. From the obtained results, it was found that, the low concentration of the cross-linker produced hydrogel with moderate properties, but in absence of the cross-linker, the obtained hydrogel exhibited good properties and can be used as friendly environmentally moisture absorbents from the organic solvents. The insolubility and swelling properties of gels were tested in these solvents. The results indicated that these hydrogels can be used as moisture absorbents and solvent dryers.  相似文献   

14.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

15.
Chitosan was dissolved in 2?% aqueous acetic acid solution and the films were prepared by solution casting. Values of tensile strength (TS), tensile modulus (TM), elongation at break (Eb?%) and water vapor permeability (WVP) of the chitosan films were found to be 30?MPa, 450?MPa, 8?% and 4.7?g?mm/m2?day?kPa, respectively. Poly(caprolactone) (PCL) films were prepared from its granules by compression molding and the values of TS, TM, Eb and WVP were 14?MPa, 220?MPa, 70?% and 1.54?g?mm/m2?day?kPa, respectively. PCL was reinforced with chitosan films, and composite films were prepared by compression molding. Amount of chitosan in the composite films varied from 10 to 50?% (w/w). It was found that with the incorporation of chitosan films in PCL, both the values of TS and TM of composite films increased significantly. The highest mechanical properties were found at 50?% (w/w) of chitosan content. The Oxygen transmission rate (OTR) of composite film was found to decrease significantly than PCL films. Thermal properties of the composite were also improved as compared to PCL. The water uptake test of the composite also showed promising results with a good stability of composite films. The interface of the composite was investigated by scanning electron microscopy and showed good interfacial adhesion between PCL and chitosan films.  相似文献   

16.
The recycle poly(ethylene terephthalate) (rPET) used as an alternative reinforcing material for in situ microfibrillar-reinforced composite, compared with liquid crystalline polymer (LCP), was investigated. The PE-LCP and PE-rPET composites were prepared as fiber using hot drawing process. The effects of draw ratios and compatibilizer (styrene-ethylene butylene-styrene-grafted maleic anhydride, SEBS-g-MA) loading on morphology, tensile properties, thermal stability and dynamic mechanical characteristics of the LCP- and rPET-composite systems were studied. In as-spun samples containing compatibilizer, the fibrillation of LCP domains was observed whereas rPET domains appeared as droplets. After drawing, good fibrillation of LCP and rPET domains is remarkably observed especially in the composite fibers with compatibilizer loading. The mechanical properties of the composite fibers were strongly depended on the fibrillation of the dispersed phases which directly related the levels of draw ratio and compatibilizer loading. The mechanical properties enhanced by SEBS-g-MA were more pronounced in the rPET than LCP systems. The presence of rPET in the composite fibers alone or with the compatibilizer clearly improved the thermal resistance of PE whereas no significant change in thermal stability for the LCP-containing composite fibers with and without compatibilizer loading. The results from dynamic mechanical analysis revealed that an improvement in dynamic mechanical properties of the composite fibers could be achieved by drawing with optimum draw ratio together with optimum compatibilizer dosage. All obtained results suggested the high potential of rPET minor blend-component as a good reinforcing and thermal resistant materials for the thermoplastic composite fiber, in replacing the more expensive LCP.  相似文献   

17.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

18.
Biodegradable nanocomposites based on poly(butylene succinate)/organoclay   总被引:2,自引:0,他引:2  
In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 Å. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 °C (from DMA, peak of tanδ) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites.  相似文献   

19.
Carrageenan-based films demonstrate good performance, the raw materials for their production are abundant in nature and can be sustainably sourced from seaweeds. Similar to other naturally-derived biopolymers, however, carrageenans are relatively expensive to purify and form into useful materials. In order to potentially lower the production costs compared to pure carrageenan, semi-refined carrageenan (SRC) plasticized with 0–50% (w/w) glycerol was investigated using a solution casting method. The film color and opacity increased along with the moisture content, whereas the water vapor permeability decreased with increasing levels of glycerol. The tensile properties of the SRC films improved significantly, particularly at glycerol additions greater than 30% (w/w). Moreover, the addition of glycerol improved the thermal stability and altered the surface morphology of the films. In general, the properties of the SRC films were comparable with refined carrageenan films suggesting that SRC has potential to be furthered developed into more cost effective primary food packaging materials.  相似文献   

20.
Asymmetric membranes of cellulose acetate/poly (butylene succinate) were prepared using immersion precipitation technique. The blended membranes were characterized by contact angle, scanning electron microscopy, thermogravimetric analysis, degradation test in compost and dynamic test of raisin wastewater treatment. Results demonstrated that hydrophilicity of cellulose acetate was enhanced by addition of poly (butylene succinate) up to 50 %. Furthermore, polymeric composition affects cross sectional structure of the membranes by controlling formation of macrovoids. Addition of poly (butylene succinate) improved the membranes thermal stability and obviously their degradation in compost. The prepared membranes were able to reject the wastewater pollutants properly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号