首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
Although the beneficial effects on growth and trace element accumulation in Salix spp. inoculated with microbes are well known, little information is available on the interactions among trace elements and macronutrients. The main purpose of this study was to assess the effect of phytoaugmentation with the rhizobacteria Agromyces sp., Streptomyces sp., and the combination of each of them with the fungus Cadophora finlandica on biomass production and the accumulation of selected trace elements (Zn, Cd, Fe) and macronutrients (Ca, K, P and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces sp. Regarding the phytoextraction of Cd and Zn, shoot concentrations were mostly increased after inoculation with Streptomyces sp. and Agromyces sp. + C. finlandica. These two treatments also showed higher translocation factors from roots to the leaves for both Cd and Zn. The accumulation of Cd and Zn in shoots was related to increased concentrations of K. This suggests that microorganisms that contribute to enhanced phytoextraction of Cd and Zn affect also the solubility and thus phytoavailability of K. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains.  相似文献   

2.
As a result of processing of metal ores, trace metals have contaminated large areas of northern France. Metal migration from the soil to groundwater presents an environmental risk that depends on the physico-chemical properties of each contaminated soil. Soil water samples were obtained over the course of 1 year with zero-tension lysimeters from an acidic, loamy, metal contaminated soil. The average trace metal concentrations in the soil water were high (e.g. for Zn 11 mg l-1 under the surface horizon), but they varied during the sampling period. Zn concentrations were not correlated with pH or total organic carbon in the solutions but were correlated with Cd concentrations. On average, 95% of the Zn and Cd but only 50% of Pb was present in a dissolved form. Analytical transmission electron microscopy was used to identify the Zn or Pb carriers. Colloids containing Pb and Zn were biocolloids, whereas colloids containing only Zn were smectites.  相似文献   

3.
The uptake of Cd, Se(IV) and Zn by the freshwater alga Scenedesmus obliquus and the subsequent transfer and release budget in Daphnia magna were investigated under different nutrient additions and cell incubation conditions. An increase in ambient phosphate concentrations from 0.5 micromol l(-1) to 50 micromol l(-1) significantly increased the intracellular accumulation of Cd (by 18x) and Zn (by 5x), but decreased the accumulation of Se (by 126x) in the alga. The percentage of these metals distributing in the intracellular pool of algae also increased substantially with increasing ambient P concentrations. Nitrate addition from 5.0 to 200 micromol l(-1) did not influence the uptake of any of the three metals, although a significant decrease in the intracellular Se distribution was observed. Radiolabeled algae under different nutrient manipulations (semi-continuous culture, starvation, and P-pulse treatments) were used to measure trophic transfer assimilation efficiency (AE) in Daphnia. When the algal cells were grown in a semi-continuous culture, starved for N and P, or were treated with P-pulse, the AEs of Cd and Zn were generally independent of the nutritional conditions, but the Se AE was significantly affected by different P levels. The efflux rate constants, determined during 10 d depuration following 7 days of dietary uptake, decreased significantly for Cd and Zn, but were relatively constant for Se with increasing P concentration. N-addition caused no effect on the metal efflux rate constants. P- or N-additions did not influence the release budget (including molting, neonates, excretion and feces) for all three elements in Daphnia. Our study indicated that phosphate enrichment may substantially increase metal uptake in green alga S. obliquus. Responses of trophic transfer in Daphnia to nutrient enrichment were metal specific. P-enrichment can possibly lead to considerable decrease on Se transfer from algae to zooplankton.  相似文献   

4.
The concentrations of heavy metals (Cd, Cu, Ni, Pb, Zn and Mn) and macroelements (K, Na, Ca and Mg) were determined in green alga Enteromorpha sp. from the coastal zone of the southern Baltic including Gulf of Gdańsk and Vistula Lagoon in 2000-2003. In order to estimate the degree of accumulation of each element by the green alga, concentration and discrimination factors (CFs) with respect to seawater were calculated. The results of factor analysis (FA) and ANOVA clearly indicate geographical differences between concentrations of chemical elements. Enteromorpha sp. from Vistula Lagoon and the southern Baltic exhibited higher levels of Mn and Ni, and Na and K, respectively. Anthropogenic impact of Cu, Pb and Zn, possibly originated from municipal sewage, was identified in alga samples collected in the Gulf of Gdańsk, especially in the vicinity of Gdynia. From comparison our data with those published earlier results that Pb content in Enteromorpha sp. from the Gulf of Gdańsk decreased within 1978-2003 reflecting reducing use of leaded petrol in Baltic countries in this period. The alga Enteromorpha sp. can be used for biomonitoring surveys of metal contaminants in coastal areas of the Baltic Sea.  相似文献   

5.
The impact of several factors on the assimilation efficiency (AE) of Cd and Zn from food in the common carp (Cyprinus carpio) was studied. Tested prey species were midge larvae (Chironomus riparius), zebra mussels (Dreissena polymorpha) and oligochaetes (Tubifex tubifex). The Cd load of the larvae did not affect the Cd AE in the carp. The Zn AE however, was negatively related to the Zn load of the prey. Food quantity and starvation of the carp did not significantly affect the Cd AE. For Zn, a significant decrease in AE was found when carp were fed ad libitum. Decreasing the temperature from 25 degrees C to 15 degrees C did not influence the Cd AE, while for Zn a significant decrease of the AE was measured. Carp assimilated Cd from both zebra mussels and oligochaetes with a significantly lower efficiency in comparison to the midge larvae, although Zn AEs was prey independent.  相似文献   

6.
Giari L  Manera M  Simoni E  Dezfuli BS 《Chemosphere》2007,67(6):1171-1181
Specimens of farmed European sea bass (Dicentrarchus labrax L., 1758) were exposed to different cadmium (Cd) concentrations (4.47, 5.63, 7.08 and 8.91 mg l(-1)) for 24 and 48 h. The effects of Cd on numbers of some cell types and structures (i.e., chloride cells, CCs; macrophage aggregates, MAs; rodlet cells, RCs) and on structure and ultrastructure of the main organs (gill, liver, intestine, kidney) were studied with routine process for light and transmission electron microscopy. Following cadmium exposure, the numbers of branchial CCs as well as intestinal and renal RCs increased significantly within 24h. Increase in metal concentration did not affect the magnitude of the numerical increment of the aforementioned cells. Moreover, in treated fish (24 and 48 h) the numbers of MAs in both head kidney and spleen were significantly higher than in control conspecifics, whilst the global area of MAs was less influenced by the acute treatment. In exposed sea bass, all the examined organs exhibited cellular modifications which appeared time- and dose-dependent. The gills showed telangectasia, lamellar fusion, oedema, epithelial lifting and leukocyte infiltration. In the liver, kidney and intestine acute cell swelling and vacuolization were common. Ultrastructurally the alterations observed frequently in hepatocytes, tubular epithelial cells and enterocytes included presence of numerous myelinoid bodies, damaged mitochondria, dilatation of endoplasmic reticulum, high number of lysosomes and autophagolysosomes. In intestinal and kidney tubular epithelia of treated fish, rodlet cells displayed some anomalies like dilatation of nuclear envelope, cytoplasmic vacuolization, presence of myelinoid bodies, rodlets degeneration and extensive discharge activity.  相似文献   

7.
Concentrations of Al, Ba, Cd, Cu, Fe, Mn, Mo, Si, Sr, Zn, Ca, K, Mg, Na and P in the livers of Baikal seal, plankton, zoobenthos, and fish, constituting the food sources for the seals, were determined by ICP-MS and ICP-AES. The accumulation of elements in the liver of seals, affected by internal and external (environmental) factors, was assessed by multidimensional (ANOVA, FA) and correlation analyses. FA has enabled identification of abiotic and biotic factors responsible for the accumulation of elements in the livers of Baikal seals. Significant influence of sex and development stage of the seals analysed on hepatic concentrations of some elements was found. The observed differences in element concentrations between pups, males and females could be attributable to the reproductive cycle of this species. ANOVA showed differences in concentrations of Fe, Zn, Cu and Cd in seals from the three separate basins of the lake. BMFs suggest biomagnification of Fe and Zn in the fish-seal trophic link.  相似文献   

8.
The effect of inoculation with indigenous naturally occurring microorganisms (an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria) isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg(-1)), 26% (at 33.0 mg Cd kg(-1)) and 35% (at 85.1 mg Cd (kg(1)). In contrast, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on inocula, are important in plant Cd tolerance and development in Cd polluted soils.  相似文献   

9.
Untreated industrial and domestic wastewater from Hanoi city is discharged into rivers that supply water for various agricultural and aqua-cultural food production systems. The aim of this study was to assess the content, distribution and fate of 33 elements in the sediment and pore water of the main wastewater receiving rivers. The sediment was polluted with potentially toxic elements (PTEs) with maximum concentrations of 73 As, 427 Cd, 281 Cr, 240 Cu, 218 Ni, 363 Pb, 12.5 Sb and 1240 Zn mg kg(-1) d.w. Observed distribution coefficients (log(10) K(d,obs)) were calculated as the ratio between sediment (mg kg(-1) d.w.) and pore water (mg L(-1)) concentrations. Maxima log(10) K(d,obs) were >4.26 Cd, >6.60 Cu, 4.78 Ni, 7.01 Pb and 6.62 Zn. The high values show a strong PTE retention and indicate the importance of both sorption and precipitation as retention mechanisms. Sulphide precipitation was a likely mechanism due to highly reduced conditions.  相似文献   

10.
In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.  相似文献   

11.
Cadmium (Cd) is a widely spread pollutant and can be easily taken up by crop from soil, resulting in a serious health issue for humans. The objective of this study was to comparatively investigate the photosynthetic activity, chlorophyll a fluorescence, chlorophyll contents, and spectral reflectance in mature and young leaves of soybean plants after being treated with different concentrations of Cd for 10 days. The photosynthetic rate, chlorophyll contents, actual photochemical efficiency of PSII, and photochemical quenching in the young leaves decreased more significantly with increasing concentrations of Cd in the nutrient solution, compared with those in the mature leaves, though the young leaves had less Cd concentrations. Thus, there was more excessive excited energy produced in the young leaves than that in the mature leaves. In the young leaves, due to more excessive excited energy, more reactive oxygen species may be generated, which further damaged the photosynthetic apparatus. It was supported by the fact that the decrease of reflectance in near-infrared wavelengths of the young leaves was more noticeable than that of the mature leaves. In addition, the chlorophyll a fluorescence transients of the young leaves was significantly different from that in the mature leaves, indicating that the electron transport of young leaves were inhibited much more severely than that of the mature leaves. These observations imply that the responses of photosynthetic activity of soybean leaves to Cd stress depend on their growth stage, and the Cd-induced inhibition of photosynthetic activity might be attributed to the decrease in chlorophyll contents and the decrease in mesophyll CO2 assimilation ability cause by the Cd, which further decreased the consumption of ATP and NADPH, leading to accumulation of NADPH on the acceptor sides of the PSI, and then feedback inhibited electron transport in chloroplasts.  相似文献   

12.
Metal accumulation by juvenile landsnails, Helix engaddensis, and its effect on growth rate was studied over a 5-week period of exposure and 2 weeks of recovery. An artificial food contaminated with Cu (4-2500 microg x g(-1)), Cd (50-800 microg x g(-1)), Pb, and Zn (20-12500 microg x g(-1)) was used. During the 7 weeks of the experiment, mortality rates were 20, 27, 30, and 38% among snails fed Cu-, Pb-, Zn-, and Cd-contaminated food, respectively. According to the ability to inhibit growth, metals were found to have the following order: Cd > Zn > Cu = Pb. Inhibitory effects of dietary metals started to be significant from the third week of exposure on. Inhibition of growth by Pb and Cu was found to be reversible, and within the first week of recovery, snails erupted their aestivation and resumed feeding and growth to gain weights similar to those of the control groups. Snails fed Cd- or Zn-contaminated food failed to resume growth during the 2 weeks of recovery. This indicates that in the case of Cu and Pb, growth inhibition was mainly due to starvation due to food rejection and aestivation. On the other hand, growth inhibition caused by Cd and Zn may have been resulting from irreversible toxicity. Therefore, snails were assumed to be sensitive to Cd and Zn but tolerant to Cu and Pb. Accumulation of Cu and Pb was significant only at the highest concentrations. At low and medium concentrations, no signs of accumulation were observed, indicating regulation at these concentrations. Cd and Zn accumulation starts at low concentrations but became significant at medium and high levels indicating accumulation of these metals.  相似文献   

13.
Zheng RL  Cai C  Liang JH  Huang Q  Chen Z  Huang YZ  Arp HP  Sun GX 《Chemosphere》2012,89(7):856-862
A historically multi-metal contaminated soil was amended with biochars produced from different parts of rice plants (straw, husk and bran) to investigate how biochar can influence the mobility of Cd, Zn, Pb and As in rice seedlings (Oryza sativa L.). Rice shoot concentrations of Cd, Zn and Pb decreased by up to 98%, 83% and 72%, respectively, due to biochar amendment, though that of As increased by up to 327%. Biochar amendments significantly decreased pore water concentrations (Cpw) of Cd and Zn and increased that of As. For Pb it depended on the amendment. Porewater pH, dissolved organic carbon, dissolved phosphorus, silicon in pore water and iron plaque formation on root surfaces all increased significantly after the amendments. The proportions of Cd and Pb in iron plaque increased by factors 1.8-5.7 and 1.4-2.8, respectively; no increase was observed for As and Zn. Straw-char application significantly and noticeably decreased the plant transfer coefficients of Cd and Pb. This study, the first to investigate changes in metal mobility and iron plaque formation in rice plants due to amending a historically contaminated soil with biochar, indicates that biochar has a potential to decrease Cd, Zn and Pb accumulations in rice shoot but increase that of As. The main cause is likely biochar decreasing the Cpw of Cd and Zn, increasing the Cpw of As, and increasing the iron plaque blocking capacity for Cd and Pb.  相似文献   

14.
Liu X  Zhao S  Sun L  Yin X  Xie Z  Honghao L  Wang Y 《Chemosphere》2006,65(4):707-715
Concentrations of P and trace metals Zn, Cu, Cd, Pb and Hg in the faeces, bones, eggshells and feathers of seabirds and in the plants, soils and sediments with and without seabird influence on Dongdao Island, South China Sea, were determined and analyzed. Among the seabird biomaterials, the levels of P, Zn, Cu and Cd are the highest in the droppings and several times those in other materials; the Hg concentration is the highest in the feathers; and the Pb content is comparable among these biomaterials. These marked differences indicate different intake-bioaccumulation-elimination pathways for different trace metals. The levels of P, Zn, Cu, Cd and Hg in the plant, soil and sediment samples with the influence of seabird droppings are significantly higher than those in the samples without, and they are significantly correlated with each other. Thus, P, Zn, Cu, Cd and Hg are very likely to have a common source-predominantly bird guano-and the faeces of red-footed booby is an important vector for the flux of nutrient phosphorus and trace metals Zn, Cu, Cd and Hg from marine to island ecosystems on Dongdao Island.  相似文献   

15.
A Zn- and pH-buffered medium was used to study the accumulation of Zn in batch-cultured algae (Selenastrum capricornutum Printz.). All experiments were carried out using (65)Zn radiotracers, which were measured by gamma-ray spectrometry. Zinc was applied in the presence of nitrilotriacetic acid (NTA), leading to free Zn(2+) concentrations ranging from 4.2 x 10(-11) to 1.6 x 10(-7) mol litre(-1). During the 75-h experiments, the rates of Zn influx and efflux were determined, the latter with full consideration for algal growth rates. Algal growth stopped completely at a free Zn(2+) concentration of 1.6 x 10(-8) mol litre(-1). Initial Zn binding was determined and, based on free Zn(2+) concentrations, presented by the apparent dissociation constant K(diss) and capacity C as 4.6 x 10(-9) mol litre(-1) and 19.8 x 10(6) mol gDW(-1), respectively. The rate constant of Zn efflux could be calculated as a constant 0.021 +/- 0.003 h(-1), irrespective of the Zn concentrations applied. The rates of Zn influx were expressed by the V(max) and K(M) values as 3.3 x 10(-10) mol gDW(-1) s(-1) and 6.3 x 10(-9) mol litre(-1), respectively. These values, which are based on applied free Zn(2+) concentrations, are compatible with the operation of a high-affinity low-concentration carrier mechanism. The results suggest that, under the conditions applied, free Zn(2+) may be the most relevant Zn species for Zn uptake; furthermore, relative growth rate may be regarded as a relatively sensitive signal for Zn stress circumstances.  相似文献   

16.
Elemental uptake and arbuscular mycorrhizal (AM) colonisation were studied during the life cycle of field collected Cd/Zn hyperaccumulating Thlaspi praecox (Brassicaceae). Plant biomass and tissue concentrations of Cd, Pb, Zn, Fe and Ni were found to vary during development, while no variation in P, K, Ca, Mn and Cu tissue concentrations were observed. The lowest Cd bioaccumulation in rosette leaves (BAF(RL)) observed during seeding was partially attributed to lower translocation from roots to rosette leaves and partially to high translocation to stalks, indicating a high Cd mobility to reproductive tissues, in line with our previous studies. The highest intensity of AM colonisation (M%) was observed in the flowering phase and was accompanied by increased root Cd, Zn, Pb and Fe contents. In addition, a positive correlation between AM colonisation and Fe contents in rosette leaves was found. The results indicate developmental dependence of AM formation, accompanied by selective changes in nutrient acquisition in T. praecox that are related to increased plant needs, and the protective role of AM colonisation on metal polluted sites during the reproductive period.  相似文献   

17.
Bufo arenarum embryos at the end of their embryonic development were acclimated to cadmium (Cd) by means of a 10-day treatment protocol. Embryos were processed for metallothionein (Mt) isolation and Cd and zinc (Zn) contents were measured. The results showed that: (1) the uptake of Cd in the experimental embryos was 7 microg/g embryo (wet weight) representing a bioaccumulation of Cd 255 times higher than in the maintaining medium; (2) a major Mt-like fraction was Cd-induced 7.8 times that in control embryos; two other protein fractions also bound Cd and Zn but were induced by Cd only about 2 and 1.4 times; (3) the Zn concentration was about 44 microg Zn/g embryo (wet weight) and did not change significantly (p>0.01) in the experimental embryos with respect to controls, but in acclimated embryos the essential metal was released from the Mts. The enhanced Mt synthesis and release of Zn from the native Mts are discussed in relation to the acclimation phenomenon.  相似文献   

18.
Accumulation of Fe, Pb, Zn, Cu, Cd, Na, K, Ca and Mg concentrations by the seagrass Halophila stipulacea (Forsk.) Aschers. was studied at eight stations of the Antikyra Gulf (Viotia, Greece). This area was of interest because the contribution of bauxite to the mineral substrate and the discharge of an aluminium factory's wastes in it. Fe, Zn and K concentrations showed a significant seasonal variation with the same pattern (maximum mean value in summer and autumn), unlike Cu, Na and Mg concentrations which showed the opposite pattern. The observed patterns were mainly attributed to the dependence of metal concentrations in the plant on the tissue-age, the growth dynamics of the seagrass and the environment. All metal concentrations in the plant present uniform distribution in the inner part of the Gulf. The leaves of H. stipulacea accumulated higher Zn, Na, K and Mg concentrations than the stems, roots and rhizoids. There was a positive correlation between Cu, Zn, Cd and Na concentrations in the above-ground and below-ground plant parts.  相似文献   

19.
Norway spruce seedlings colonized with Hebeloma crustuliniforme were grown in growth pouches. After formation of ectomycorrhizas, the seedlings were exposed to Al or the heavy metals Cd, Cu, Ni, or Zn at various concentrations for 5 weeks to estimate the detection limits of metals with X-ray microanalysis in the cryo-scanning electron microscope. When the lowest metal concentrations (1 mM Al(3+), 0.1 mM Cd(2+), 0.2 mM Cu(2+), 0.5 mM Ni(2+), 2 mM Zn(2+)) were applied, only Al and Zn were detected at low X-ray counts in the ectomycorrhizas. After application of 10-fold higher metal concentrations, distinct metal accumulation patterns were observed. Cd was detected predominantly in the Hartig net, Al and Ni in the Hartig net and in the cell walls of the cortex, and Zn in the Hartig net, the cortical cell walls and the fungal mantle. Cu was not detected at all. By combining X-ray microanalysis with absolute metal concentrations found in the roots, the estimated detection limits of X-ray microanalysis were: Al> or =0.86 mg g(-1), Cd> or =0.26 mg g(-1), Ni> or =1.30 mg g(-1), and Zn> or =0.54 mg g(-1), whereas Cu was not detectable even at root concentrations of 0.47 mg g(-1). Treatments with the highest metal concentrations showed high X-ray counts of metals in cells of the stele but reduced concentrations of the macronutrients K, Mg, and P in roots, indicating a possible disturbance of root and ectomycorrhizal function.  相似文献   

20.
Jézéquel K  Perrin J  Lebeau T 《Chemosphere》2005,59(9):1323-1331
In order to reduce the cadmium potentially available for plants, soil bioaugmentation was performed by using a Bacillus sp. In a pot experimentation, sterilized and non-sterilized soils were inoculated using free or immobilized cells entrapped in alginate beads. This test was carried out with different inoculum sizes (2 x 10(10) and 2 x 10(11)CFU kg(-1) dw of soil) and alginate bead compositions (10 and 15 g of both alginate and CaCl(2) l(-1)). Then, the soil pots were incubated at 20 degrees C and the soil humidity was kept at a level of 20%. After 3 weeks of a batch incubation, the potentially phytoavailable Cd was reduced up to a factor of 14. The bioaugmentation resulted in the soil colonization by Bacillus sp. thanks to an increase of the cell concentration up to 1.8 log units. However, in comparison to the cells being inoculated in a free mode, the immobilization of the cells did not significantly improve the survival of the cells in the soil. Although the resulting effect not being highly pronounced, the potentially phytoavailable Cd correlated with the cell concentration in a surprisingly positive way. What is more, the Bacillus concentrations in the soil were positively correlated with the inoculum, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号