首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用自行研制的生物转鼓过滤器(RDB)反硝化净化NO。结果表明,在实验温度为25~30℃、pH为7.0~7.5、转鼓转速为1.0r/min、空床停留时间(EBRT)为86.40s、营养液用量为5.0L、营养液更换频率为0.2L/d的条件下,RDB在30d内完成挂膜;RDB稳定运行期间,当NO进气质量浓度为90~433mg/m3时,NO去除率维持在42.9%~85.2%,平均去除负荷为10.40g/(m3.h);转鼓转速决定了生物膜表面的更新速率和液膜厚度,当转速为0.5r/min时,NO去除率达到最大值(75.0%);将营养液用量控制在1.3~3.0L较为合理;EBRT是决定反硝化效率的重要因素,当EBRT为345.60s时,NO去除率不受其进气浓度的影响,且去除率高达95%以上,当EBRT为43.20s、NO进气质量浓度从98mg/m3增加到1095mg/m3时,NO去除率从62.5%下降到30.7%,当进气负荷为50.00g/(m3.h)时,NO去除负荷达到最大值(27.50g/(m3.h))。  相似文献   

2.
SBR用于焦化废水生物处理的试验研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2N的积累,NO2N对COD浓度贡献值得关注。  相似文献   

3.
FeⅡ(EDTA)协同生物转鼓过滤器去除NO的实验研究   总被引:1,自引:0,他引:1  
采用自行研制的生物转鼓反应器(RDB)处理难溶于水的NO废气,为提高NO的传质系数和去除效率,实验考察了营养液中添加FeⅡ(EDTA)络合剂协同RDB以提高NO去除效率的过程.结果表明,当空床停留时间(EBRT)为0.96 min时,在营养液中添加FeⅡ(EDTA)至100mg/L后,NO的去除效率从70.78%升至7...  相似文献   

4.
在自行研制的生物转鼓过滤器(RDB)内,考察了反硝化净化一氧化氮(NO)废气的去除率、去除负荷和以及不同氧气含量对反硝化过程的影响。结果表明,在温度25~30℃、pH 7~7.5、转鼓转速1 r/min、营养液更新0.2 L/d条件下,挂膜历时30 d完成。稳定运行期,NO进气浓度为90~433 mg/m3,去除率维持在60%~85%之间,平均去除负荷为10.4 g/(m3.h);在短期影响考察时,氧气含量的增加使得气液两相的传质增强,加快了微生物的降解速率,但从长期影响的实验结果分析,低浓度的氧气能够提高NO的净化效率,而过高的氧气含量则抑制了反硝化过程,这是由于氧气对反硝化过程的抑制作用和化学氧化的促进作用共同影响的结果。  相似文献   

5.
采用自行研制的生物转鼓反应器(RDB)处理难溶于水的NO废气,为提高NO的传质系数和去除效率,实验考察了营养液中添加FeⅡ(EDTA)络合剂协同RDB以提高NO去除效率的过程。结果表明,当空床停留时间(EBRT)为0.96 min时,在营养液中添加FeⅡ(EDTA)至100 mg/L后,NO的去除效率从70.78%升至79.26%。未添加FeⅡ(EDTA)时NO去除率随营养液的增加下降,添加FeⅡ(EDTA)至100 mg/L后,去除率随营养液量的增加先上升后下降,且下降速率比上升速率大。随着营养液中FeⅡ(EDTA)浓度从0增加至500 mg/L,实验最佳温度从32.5℃升至47.5℃,但添加FeⅡ(ED-TA)至100 mg/L对实验的最适pH值没有太大影响。  相似文献   

6.
一株施氏假单胞菌Pseudomonas stutzeri DN-LWX19的脱氮性能   总被引:1,自引:0,他引:1  
从缺氧生物滤池筛选纯化得到一株具有高效反硝化能力的异养菌DN-LWX19,通过形态观察、生理生化特性及16S rDNA同源性分析,确定该菌株为施氏假单胞菌(Pseudomonas stutzeri).脱氮性能研究结果表明,菌株DN-LWX19在NO3--N初始浓度为120.43 mg/L的试管培养基中,60 h对NO3--N去除率达90%,NO2--N积累浓度仅0.05 mg/L.以添加适量乙酸钠的实际污水处理二级出水为液体培养基,研究DN-LWX19在初始NO3--N浓度约为30.00 mg/L时的脱氮效果,当碳氮比(COD/NO3--N)为5∶1时,菌株DN-LWX19在32 h对NO3--N去除率为100%,但是有NO2--N的积累(7.00 mg/L),且至72 h无明显变化;当碳氮比为9∶1时,菌株DN-LWX19在32h对NO3--N的去除率为100%,且无NO2-N的积累.  相似文献   

7.
有机负荷对膜-生物反应器硝化性能的影响   总被引:1,自引:0,他引:1  
采用厌氧动态膜-生物反应器(AnDMBR)组合自养膜-生物反应器(MBR)工艺,研究冬季低温条件下系统的硝化效果以及TP的去除效果,并与单级MBR工艺进行对比。结果表明:(1)AnDMBR对COD的去除率基本保持在50%~60%,AnDMBR组合自养MBR工艺对COD的去除率为80%~85%;单级MBR工艺对COD的去除率为80%左右。(2)总体上,AnDMBR组合自养MBR工艺对NH4+-N的去除率大于95%;单级MBR对NH4+-N的去除效果比AnDMBR组合自养MBR工艺差。(3)AnDMBR组合自养MBR工艺中,出水NO2--N与NO3--N均有积累;单级MBR工艺中,出水NO2--N积累不明显。(4)相对于亚硝酸盐氧化菌(NOB),氨氧化菌(AOB)对有机负荷更敏感,当有机负荷高时,AOB更易受到异养菌活动的抑制;当有机负荷降低、异养菌活性减弱时,AOB活性明显增强,系统的硝化效果得到明显改善。(5)AnDMBR组合自养MBR工艺对TP的去除率高于80%,单级MBR工艺稳定后对TP的去除率仅为20%~30%。(6)从呼吸速率和硝化速率可知,自养MBR的硝化效果优于单级MBR。  相似文献   

8.
污泥减量过程中臭氧氧化对硝化和反硝化影响的试验研究   总被引:15,自引:3,他引:12  
采用AO工艺,考察了在污泥减量过程中臭氧(O3)氧化对生物系统硝化和反硝化能力的影响.结果表明,在每克SS中O3投量为0.05 g时,氧化后污泥中的CODcr由37.5 mg/L增至700mg/L,TN由4.86 mg/L增至36.6 mg/L,NH4 -N由0.353mg/L增至7.49 mg/L,NO3--N由2.19 mg/L增至5.15 mg/L.虽然氧化系统出水NH4 -N浓度略高于对照系统,但氧化系统NH4 -N的去除率大于98%,硝化能力基本没有受到O3氧化的影响.O3氧化污泥后增加的有机物作为附加的碳源循环至缺氧段,提高了反硝化的效果,当污泥氧化比例分别为10%、20%、30%时,进入缺氧段的CODCr/TN分别平均增至11.21、11.56、11.88,氧化系统的反硝化效果也随之分别提高5%、25%、37%.  相似文献   

9.
海水微生物菌群去除铵氮和亚硝酸氮研究   总被引:7,自引:0,他引:7  
研究了筛选的自养和异养微生物菌群的脱氮效果后发现,异养微生物无论是生长还是对NH4^ -N及NO2-N的去除都明显好于自养微生物。通过研究,培养出了具备很强脱氮能力包含自养和异养菌的混合微生物,在细胞干重浓度为0.48g/L的情况下,在实验3h和5h后,可将初始浓度106mg/L的NH4^ -N和初始浓度49.9mg/L的NO2^--N全部去除。  相似文献   

10.
氮源对于气相生物滴滤床的净化效果有显著的影响。由于喷淋液体在生物滴滤床中分布不均匀 ,导致床层中局部氮源不充足 ,从而使滤床的去除效果降低。提高喷淋液中氮源的浓度 ,可以较大幅度提高净化效率。采用NH-4 N会导致滤床中硝化细菌的生长和累积 ,使得异养菌和硝化细菌在溶解氧、氮源和填料空间上形成竞争 ,并致使氮源分布不均匀 ,而采用NO3 N作为氮源可以改善这种状况  相似文献   

11.
Biotrickling filtration of nitric oxide   总被引:21,自引:0,他引:21  
A biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm and specific surface area = 120 m2/m3) was utilized to treat NO in an air stream. The operational stability, as well as the effects of gas empty-bed retention time (EBRT) and nutrient addition on the removal ability of NO, were tested. Approximately six weeks were required for the development of a biofilm for NO degradation, and a two-week organic carbon deficiency resulted in the detachment of biofilms from the packing surfaces. A steady removal rate of 80% was attained at specified influent NO concentrations of 892 to 1237 ppm and an EBRT of 118 sec. The effluent NO concentration diminished exponentially with enlarging EBRT, with influent NO concentrations of 203-898 ppm, and EBRTs of 25 to 118 sec. Nutrient addition is essential for efficient removal of the influent NO. Mass ratios of C: P: N = 7: 1: 30 and NaHCO3: NO-N = 6.3 could be used for practical applications.  相似文献   

12.
This study aimed to develop a biofilter packed only with fern chips for the removal of odorous compounds from recycled nylon melting operations. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter consisting of an acrylic column (14 cm2?×?120 cm height) packed with fern chips to a volume of around 19.6 L was used for the test. Experimental results indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major volatile organic compounds (VOCs) emitted from thermal smelting of recycled nylon at 250 °C. With operation conditions of medium pH of 5.5–7.0, empty bed retention time (EBRT) of 6–12 sec, influent total hydrocarbon (THC) concentrations of 0.65–2.61 mg m?3, and volumetric organic loading of 0.05–0.85 g m?3 hr?1, the fern-chip-packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration have a great potential for the degradation of gas-borne odorous compounds. THC removal efficiency of around 80% can be achieved. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

13.
The characteristics of ammonia removal by two types of biofilter (a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow) were investigated. A mixture of organic materials such as compost, bark, and peat was used as the biofilter media based on the small-scale column test for media selection. Complete removal capacity, defined as the maximum inlet load of ammonia that was completely removed, was obtained. The modified biofilter showed complete removal up to 1.0 g N/kg dry material/day. However, the removal capacity of the standard biofilter started to deviate from complete removal around 0.4 g N/kg dry material/day, indicating that the modified biofilter system has higher removal efficiency than the standard upflow one. In kinetic analysis of the biological removal of ammonia in each biofilter system, the maximum removal rate, Vm, was 0.93 g N/kg dry material/day and the saturation constant, Ks, was 32.55 ppm in the standard biofilter. On the other hand, the values of Vm and Ks were 1.66 g N/kg dry material/day and 74.25 ppm, respectively, in the modified biofilter system.  相似文献   

14.
ABSTRACT

A biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm and specific surface area = 120 m2/m3) was utilized to treat NO in an air stream. The operational stability, as well as the effects of gas empty-bed retention time (EBRT) and nutrient addition on the removal ability of NO, were tested. Approximately six weeks were required for the development of a biofilm for NO degradation, and a two-week organic carbon deficiency resulted in the detachment of biofilms from the packing surfaces. A steady removal rate of 80% was attained at specified influent NO concentrations of 892 to 1237 ppm and an EBRT of 118 sec. The effluent NO concentration diminished exponentially with enlarging EBRT, with influent NO concentrations of 203-898 ppm, and EBRTs of 25 to 118 sec. Nutrient addition is essential for efficient removal of the influent NO. Mass ratios of C: P: N = 7: 1: 30 and NaHCO3: NO-N = 6.3 could be used for practical applications.  相似文献   

15.
Kim JH  Rene ER  Park HS 《Chemosphere》2007,68(2):274-280
The performance of a lab scale biofilter packed with biomedia, encapsulated by sodium alginate and polyvinyl alcohol was used for treating ammonia (NH(3)) gas at different loading rates. The metabolic end products during NH(3) oxidation were NH(4)(+), NO(3)(-) and NO(2)(-). It is noteworthy to mention that the immobilized cell biofilter required no separate acclimatization period and showed high removal efficiencies during the start of continuous experiments. The removal efficiency was nearly 100% when ammonia loading was 4.5gm(-3)h(-1) and the maximum elimination capacity achieved in this study was 5.5gNH(3)m(-3)h(-1) at a loading rate of 7.5gm(-3)h(-1). Shock loading studies were carried out to ascertain the response of the immobilized cells to fluctuations in inlet concentration and flow rate. The inlet loading rates were varied between 0.05 and 6gNH(3)m(-3)h(-1) during this phase of operation. The biofilter responded effectively to these shock loading conditions and recovered rapidly within 4-8h. Pressure drop values were consistently less and insignificant. The results from this study indicated that this immobilized cell biofilter could be considered as a potential option to treat NH(3) under steady and transient state operation.  相似文献   

16.
The objective of this research was to investigate a sequentially loaded and regenerated granular activated carbon (GAC) biofilter system and to determine whether regenerative ozonation/advanced oxidation could improve the removal and biodegradation of a volatile organic compound from a contaminated airstream. Bench-scale reactors were constructed to operate in a manner analogous to a commercially available system manufactured by Terr-Aqua Environmental Systems (only with longer contact time). The GAC system consisted of two GAC biofilter beds that operated in a cyclical manner. On a given day, the first GAC bed adsorbed methyl isobutyl ketone from a simulated waste airstream, while the second bed underwent regeneration; then on the next day, the second bed was in the adsorption mode while the first was regenerated. Three bench-scale systems were used to compare the performance under three operating conditions: (1) ozone/ associated oxidant regeneration of a GAC biofilter system that was seeded with microorganisms from a field site, (2) a humid air regeneration of a seeded GAC biofilter, and (3) a humid air regeneration of an unseeded GAC biofilter. For the advanced oxidant regenerated GAC biofilter, a maximum removal efficiency of >95% was achieved with an empty bed contact time of 148 sec and an influent concentration of 125 ppm methyl isobutyl ketone, and 90-95% was achieved at 148-sec empty bed contact time and a 1150-ppm influent.  相似文献   

17.
采用厌氧/射流充氧生物滤塔/人工湿地组合工艺处理农村生活污水,考察了组合工艺及其各处理单元对污染物去除的贡献率。在实验室进行了小试,实验结果表明:该组合工艺对污染物具有较好的去除效果,在稳定工况下,组合工艺对COD、NH4+-N、TN和TP的平均去除率分别为85.4%、74.5%、75.9%和78.3%。生物滤塔能有效...  相似文献   

18.
Abstract

The objective of this research was to investigate a sequentially loaded and regenerated granular activated carbon (GAC) biofilter system and to determine whether regenerative ozonation/advanced oxidation could improve the removal and biodegradation of a volatile organic compound from a contaminated airstream. Bench-scale reactors were constructed to operate in a manner analogous to a commercially available system manufactured by Terr-Aqua Environmental Systems (only with longer contact time). The GAC system consisted of two GAC biofilter beds that operated in a cyclical manner. On a given day, the first GAC bed adsorbed methyl isobutyl ketone from a simulated waste airstream, while the second bed underwent regeneration; then on the next day, the second bed was in the adsorption mode while the first was regenerated.

Three bench-scale systems were used to compare the performance under three operating conditions: (1) ozone/ associated oxidant regeneration of a GAC biofilter system that was seeded with microorganisms from a field site, (2) a humid air regeneration of a seeded GAC biofilter, and (3) a humid air regeneration of an unseeded GAC biofilter. For the advanced oxidant regenerated GAC biofilter, a maximum removal efficiency of >95% was achieved with an empty bed contact time of 148 sec and an influent concentration of 125 ppm methyl isobutyl ketone, and 90–95% was achieved at 148-sec empty bed contact time and a 1150-ppm influent.  相似文献   

19.
生物法同时脱硫脱硝试验研究   总被引:1,自引:0,他引:1  
采用轻质陶粒生物滴滤塔处理摸拟燃煤烟气中二氧化硫和氮氧化物的试验研究,探讨生物法同时脱硫脱硝的影响因素及生物降解宏观动力学。研究结果表明,生物法能有效同时去除烟气中的二氧化硫和氮氧化物,烟气同时脱硫脱硝效率分别可达99.9%和88.9%。为获得最佳烟气同时脱硫脱硝效果,二氧化硫和氮氧化物进气负荷应分别<140 g/(m3·h)和20 g/(m3·h),循环液pH=7~8,空床停留时间为30.28 s,喷淋密度为8.81 L/(m3·h)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号