首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
多环芳烃(PAHs)是普遍存在于环境中具有强烈毒性、致突变性和致癌性的难降解有机物,可造成严重的环境污染。由于低水溶性而导致的低生物可利用率是限制PAHs微生物降解的主要因素。生物表面活性剂鼠李糖脂由于在形成胶束后能够大幅提高PAHs的表观溶解度,且毒性低、无二次污染,因而在PAHs微生物降解的研究中得到广泛关注。目前关于鼠李糖脂强化PAHs微生物降解的研究主要集中于其强化效果,而对其强化机制的研究仍不够深入。该文基于鼠李糖脂的性质及铜绿假单胞菌(Pseudomonas aeruginosa)的鼠李糖脂生物合成及调控,从鼠李糖脂提高PAHs溶解度、强化胶束传质、提高细胞表面疏水性、降低细胞表面Zeta电位、提高细胞膜通透性等方面综述其在强化PAHs微生物降解机制方面的最新研究进展,并总结了温度、pH、浓度和离子强度等环境因素对强化效果的影响。在此基础上,提出未来需要进一步探索鼠李糖脂生物可降解性与强化降解效果之间的平衡关系,明确pH影响PAHs溶解度的机理,并从基因、转录、蛋白和代谢水平对鼠李糖脂作用前后降解菌内参与调控菌体细胞表面疏水性(CSH)和膜通透性的相关基因的表达差异进行分析...  相似文献   

2.
铜绿假单胞菌是生物表面活性剂鼠李糖脂最主要的生产菌株,对石油增溶、降解有很好的效果.从轻质原油样品中富集分离获得菌株D1,利用CTAB-亚甲基蓝平板法初步确定该菌株可以合成鼠李糖脂,分析其16S rRNA基因序列确定菌株D1属于铜绿假单胞菌(Pseudomonas aeruginosa).以菜籽油和甘油为碳源,菌株D1能够分别合成18.4 g/L和11.4 g/L鼠李糖脂.分析菌株D1可利用碳氢化合物种类,发现在以原油和柴油的培养基中,D1细胞数量分别增加了39.2倍和33.9倍.在10 d培养过程内,菌株D1能够分解基本培养基中33.3%的原油.相同时间内,补加0.5 g/L的甘油,菌株D1能够分解培养基中71.8%的原油.上述表明菌株D1能够合成鼠李糖脂和有效地降解原油,在石油污染的生物修复方面具有较好的应用潜力.  相似文献   

3.
考察了不同烷烃底物和温度、酸度、盐度等环境条件对两株铜绿假单胞菌接触烷烃方式和降解活性的影响.结果表明,微生物接触烷烃的两种方式——直接接触方式和乳化接触方式同时存在于菌体降解烷烃过程中且受底物和环境条件的影响.底物烷烃碳数的增加对菌株两种接触方式降解烷烃都有利,而盐度增加对它们都不利;高温、偏碱性环境以及延长降解时间有利于菌体以乳化方式降解烷烃;低温、中性溶液环境有利于菌体以直接接触方式降解烷烃.  相似文献   

4.
鼠李糖脂对东海典型甲藻赤潮生物生长抑制作用的影响   总被引:1,自引:0,他引:1  
探讨了铜绿假单胞菌产鼠李糖脂类生物表面活性剂对东海典型甲藻赤潮生物锥状斯式藻(Scrippsiella trochoidea)、塔玛亚历山大藻(Alexandrium tamarense)、海洋原甲藻(Prococentrum marinum)和微小原甲藻(P.minium)生长的抑制作用,并对其不同抑制作用的机理进行了初步探讨.结果表明,鼠李糖脂在一定浓度范围内对几种甲藻的生长表现出明显的抑制作用,对几种甲藻生长抑制作用的强弱顺序为:锥状斯式藻>微小原甲藻>塔玛亚历山大藻>海洋原甲藻.对不同属的甲藻,这种抑制作用可能与藻细胞本身表面的附属物、内部物质组成及个体大小有关;而对于同一属的甲藻则与各甲藻的生物膜脂肪酸组成尤其是其多不饱和脂肪酸的含量有关,即甲藻的多不饱和脂肪酸含量越低,鼠李糖脂对藻细胞生长的抑制作用越明显,反之亦然.图1表2参18  相似文献   

5.
鼠李糖脂对沉积物中Cd和Pb的去除作用   总被引:22,自引:0,他引:22  
用铜绿假单胞菌(Pseudomonas aeruginosa)产生的鼠李糖脂生物表面活性剂对沉积物中重金属的去除作用进行了研究.研究表明,鼠李糖脂对沉积物中的Cd和Pb有明显的去除作用,在鼠李糖脂溶液的pH值为10.0的条件下对重金属的去除效率最好,而且当鼠李糖脂在沉积物上的吸附达到饱和时去除效率达到最大.通过连续萃取对提取前和提取后沉积物样品中重金属的形态进行分析,发现可交换态和有机结合态的重金属较容易去除.通过4次连续的提取,使cd和Pb的去除效率分别达到80.1%和36.5%.  相似文献   

6.
生物表面活性剂鼠李糖脂对水体中石油烃降解的促进作用   总被引:3,自引:0,他引:3  
从被含油废水污染的土壤中筛选得到4株能利用柴油为唯一碳源生长的杆菌(X1,X2,X3和X4),经鉴定,这4株菌分别属于沙雷铁氏菌属(Serratiasp.)、不动菌属(Acinetobactersp.)、芽孢杆菌属(Bacillussp.)和氮单胞菌属(Azomonassp.).其中,菌株X4于32℃摇床培养28d后对柴油的降解率达62%,而在相同条件下,添加生物表面活性剂鼠李糖脂后柴油的降解率提高了26%.平板菌落计数结果表明,鼠李糖脂能促进菌的生长,生物量明显增多.对菌株降解反应的动力学研究进一步验证了鼠李糖脂对菌株X4降解石油烃的促进作用,添加了鼠李糖脂的样品组比对照组的半衰期缩短了近1倍.通过设计正交实验,本文研究了培养温度、培养时间、鼠李糖脂的添加量及石油烃的浓度等主要环境因子对水体中石油烃降解的影响.实验结果表明,影响水体中石油烃降解的主导因子是培养时间,其次是培养温度、石油烃的浓度和鼠李糖脂的添加量.图4表2参17  相似文献   

7.
王红旗  熊樱  陈延君 《环境化学》2008,27(3):339-344
以正十六烷为代表污染物,研究2种微生物对烷烃的反应动力学方程,以及正十六烷的摄取和运输机理;确定吸附摄取和运输对整个代谢过程的影响.结果表明,降解菌对正十六烷均有一定的运输富集能力;2株菌对正十六烷的运输过程存在很大差别,DQ01对正十六烷的运输呈缓慢趋势,而DQ02对正十六烷的主动运输过程是比较快的.菌体对正十六烷的吸附和运输过程对于正十六烷的降解速度影响较小,限制污染物降解速率和程度的关键可能是降解过程.  相似文献   

8.
对蒽生物降解中铜绿假单胞菌S6分泌的生物表面活性剂的作用进行了研究.结果表明,在接种蒽降解菌A10之前1d及与接种A10同时投加60mg.l-1的生物表面活性剂能够最大程度地促进蒽降解,相比于未添加表面活性剂的样品,降解率分别提高了16.50%和18.03%.过高浓度的生物表面活性剂会在一定程度上抑制蒽的降解.对蒽降解过程的分析表明,提前投加生物表面活性剂能明显促进蒽的降解且一直保持较好的降解效果.蒽降解过程中,生物表面活性剂能够被微生物利用,具有生物可利用性,是一种环境友好的生物制剂.  相似文献   

9.
以改良的Hummers氧化法制备了氧化石墨烯(GO),并研究其对铜绿假单胞菌发酵液中鼠李糖脂(Rha)的吸附分离特性.结果表明,通过Hummers氧化法,可使石墨粉氧化为GO,并形成层数很少甚至单层的GO片,使所得GO的比表面积较石墨粉显著增大.以所得GO对铜绿假单胞菌NY3发酵液中的Rha进行吸附,发现当发酵液的pH值为4.0、吸附温度为25℃时,Rha在GO表面的吸附可迅速平衡,其最大吸附量约为1.7 g·g~(-1).pH 13的氢氧化钠溶液可使Rha一次洗脱回收率为86.1%,是较佳的洗脱剂.重复利用实验表明,且所得的GO吸附剂可重复利用.  相似文献   

10.
以滴滴涕(DDT)为目标污染物,采用课题组前期研究所筛选出的滴滴涕降解菌——甲基营养型芽孢杆菌(Bacillus methylotrophicus)菌液为供试菌液,选取混合表面活性剂[十二烷基苯磺酸钠(SDBS)和吐温80(Tween80),比例为2∶3]及生物表面活性剂-鼠李糖脂(RL)作为供试表面活性剂,通过田间小区实验,研究了表面活性剂、DDT降解菌对土壤中DDT的去除、降解情况以及两者联合处理对土壤中DDT污染的修复效果。结果表明,在单独添加表面活性剂的处理中,H300、RL5和RL10的处理效果最好,土壤中DDT的降解率最高可达29.60%。单独接种降解菌处理的土壤中DDT残留量显著减少,5个月后降解率可达47.05%。混合表面活性剂与菌株联合处理1个月后,H70+N的DDT降解率最高,可达63.53%;生物表面活性剂-降解菌处理以RL20+N的DDT降解率最高,可达42.32%。随着处理时间延长,表面活性剂与菌株联合处理土壤中DDT降解率的增幅逐渐下降。在处理5个月后,混合表面活性剂-降解菌的处理中以H70+N的DDT降解率最高,可达63.98%;生物表面活性剂-降解菌的处理中以RL20+N的DDT降解率最高,可达45.64%;混合表面活性剂-降解菌的处理效果略优于生物表面活性剂+菌,其中H70+N的处理效果最好,为63.98%。  相似文献   

11.
分离并鉴定了长链烷烃降解菌Pseudomonasaeruginosa1785和P.marginata766烃羟化酶基因alkB片段.根据烃羟化酶的保守氨基酸序列,设计兼并引物,扩增P.aeruginosa1785和P.marginata766的alkB片段,获得了目标产物.经DNA测序和氨基酸序列分析,证实目标片段编码的肽段含有烃羟化酶的特征基序.由此确认采用该方法分离到了长链烷烃降解基因的alkB同源体片段.DNA序列比对结果表明,P.aeruginosa1785和P.marginata766的alkB片段与P.aeruginosaPAO1的alkB1和alkB2的相似性分别达到95.7%和94.8%.这些alkB片段可用于分析烃降解微生物群落结构.图3表2参11  相似文献   

12.
鼠李糖脂对土壤中原油降解的促进   总被引:1,自引:0,他引:1  
从辽河油田石油污染的土壤中筛选、驯化得到三株对辽河原油具有较高降解效果的菌种(H1,H2,H3),选取对原油降解率最高的菌株H1为供试菌种,以受原油污染的天津滨海地区典型土壤(淤泥质粉质粘土夹粉砂)为供试土样,考察了不同浓度下鼠李糖脂对菌种H1生长、原油增溶和降解效果的影响.结果表明,鼠李糖脂对菌种H1无毒性,其对原油增溶效果明显,原油溶解度随着鼠李糖脂浓度的增加而增加.降解动力学实验结果表明,原油的降解符合指数常数模型.鼠李糖脂能明显促进土壤中原油的降解,缩短降解周期,大大提高修复效率.  相似文献   

13.
ABSTRACT

Phenanthrene is a toxic and mutagenic pollutant that can cause severe environmental and human health issues. The bioremediation of these polyaromatic hydrocarbons (PAHs) is possible with a biosurfactant by enhancing hydrophobicity. In this study, the production of a biosurfactant by Bacillus pumilus 1529 and its effects on the phenanthrene biodegradation pathway were examined. Biosurfactant production was determined using hemolytic activity, emulsification index, and surface tension. For phenanthrene metabolite detection, samples at 0, 7, 14, and 21 incubation days were analysed by gas chromatography-mass (GC-mass) spectrometry. The results showed that Bacillus pumilus 1529 can reduce surface tension to 22.83?±?1.1?mN?m?1. Furthermore, the GC-mass spectrometry analysis showed that 1-hydroxy-2-naphthoic acid, benzaldehyde, o-phthalic acid, and phenylacetic acid were notable phenanthrene metabolites produced during phenanthrene biodegradation. Biodegraded phenanthrene and its metabolites have a less toxic effect on the germination of safflower seeds than non-biodegraded phenanthrene. The IC50 of phenanthrene on seed germination after biodegradation was increased to approximately 113?mg?L?1. In general, biodegradation aided by biosurfactant producing bacteria contributed to turning the toxic phenanthrene into less harmful metabolites with lower phytotoxicity effects, indicating that its application in the bioremediation of PAHs is promising.  相似文献   

14.
利用生物表面活性鼠李糖脂(RL)洗脱土壤,再通过紫外光预照射与生物降解协同去除洗脱液中的PCBs的组合方法对多氯联苯(PCBs)污染土壤进行修复,旨在研究RL在修复PCBs污染土壤中的作用及其机理。结果表明,RL对PCBs的洗脱具有显著的促进作用,PCBs的总洗脱率与RL的质量浓度呈正相关。当洗脱液中加入2 000 mg.L-1的RL,在3次批洗脱后,人工污染土样和陈化土样的PCBs总洗脱率分别达到了90.1%和47.1%。PCBs降解菌P.LB400在以RL或联苯为碳源的驯化培养基中均能够快速生长。当土壤洗脱液中的PCBs被P.LB400的生长细胞菌液降解时,RL对PCBs的生物降解具有显著的促进作用;而在P.LB400的休眠细胞降解体系中,RL对PCBs的生物降解有一定的抑制作用。紫外光预照射对土壤洗脱液中PCBs的生物降解有一定的促进作用。紫外光预照射和生物降解的耦合有利于提高PCBs的降解速率。  相似文献   

15.
为了探讨AgNPs对典型微藻的急性毒性效应及其机制,采用柠檬酸钠还原法制备AgNPs,以摇瓶实验法评估了不同浓度的AgNPs和Ag+对铜绿微囊藻和普通小球藻叶绿素a含量、形态结构和叶绿素荧光参数的影响。实验结果表明:AgNPs对普通小球藻和铜绿微囊藻的96 h-EC50分别为1.113 mg·L-1和0.697 mg·L-1,而Ag+对2种藻的96 h-EC50分别为0.106 mg·L-1和0.032 mg·L-1。扫描电镜结果表明:AgNPs处理使普通小球藻细胞表面出现褶皱,细胞变形甚至向内塌陷。对铜绿微囊藻部分细胞出现变形变得不规则,且出现某些胞外物质使细胞粘附在一起。透射电镜观察发现,高浓度Ag+处理使2种藻的细胞均发生质壁分离,部分细胞转变为孢子。而AgNPs处理使普通小球藻细胞蛋白核增大,蛋白核与类囊体区无明显连接通道。铜绿微囊藻拟核区膨大,类囊体和色素体被推向四周,部分类囊体断裂,同时,发现该藻可以分泌胞外物质在细胞周围吸附AgNPs颗粒。对于普通小球藻,0.6 mg·L-1AgNPs处理后细胞光系统Ⅱ的最大光化学量子产率ΦP0相对于CK没有显著差异,但0.09 mg·L-1Ag+处理使ΦP0显著增加。在高浓度AgNPs或Ag+处理时,ΦP0均显著降低。AgNPs未对普通小球藻光系统II性能参数PI_Abs造成影响,但不同浓度Ag+处理均使得该参数显著升高。对于铜绿微囊藻,2种毒物均使其ΦP0显著降低。而PI_Abs仅在2种毒物的最高浓度处理时显著降低。综上,AgNPs对2种藻的急性毒性远小于Ag+,而两者对铜绿微囊藻的毒性均大于普通小球藻。AgNPs胁迫使2种藻叶绿素a含量显著降低,并诱导2种藻在形态结构和光合生理方面发生了显著变化,造成不同程度的损伤,但与Ag+的毒性效应存在一定的差异。提高光吸收能通量补偿耗散能量和分泌胞外物质结合Ag+是微藻2种重要的解毒机制。  相似文献   

16.
The aim of this study was to identify genes involved in long-chain alkane degradation in Dietzia sp. DQ12-45-1b. Functional genes were annotated by genome analysis. Induction of alkane hydroxylase genes by C28 n-alkane was analyzed by using quantitative real-time PCR in wild-type Dietzia sp. DQ12-45-1b and its alkW1 gene knockout mutant strain M 5-5. From the genome of Dietzia sp. DQ12-45-1b, two homologues, G1 and G2 genes were annotated, which showed 50% amino acid sequence similarity with AlmA from Acinetobacter sp. DSM17874, and 48% amino acid sequence similarity with LadA from Geobacillus thermodenitrificans NG80-2, respectively. In addition, G1 showed 71% amino acid sequence similarity with G1a, and G2 showed 34% and 87% amino acid sequence similarities with G2a and G2ß, respectively, which were annotated from Dietzia sp. E1 genome. In addition, the alkW1 gene knockout strain M 5-5 could grow with C28 n-alkane as the sole carbon source, indicating the presence of potential long-chain alkane hydroxylase gene(s) other than alkW1 in Diezia sp. DQ12-45-1b. Accordingly, induction of G1 and G2 genes was observed when Dietzia ap. DQ12-45-1b and alkW1 knockout mutant strain M 5-5 grew with C28 n-alkane as sole carbon source. The results indicated that G1 and G2 genes are mostly responsible for the degradation of long-chain alkanes in Dietzia sp. DQ12-45-1b, which has unique multiple alkane hydroxylase systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号