首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study proposed a decomposition method based on the normalized quadratic shadow unit cost function to explore the determinants of the change in energy intensity in China from 1985 to 2010.The decomposition analysis indicates that (1) the improvement in technical efficiency dramatically reduced the energy intensity,whereas technological change played only a minor role,which could be attributed to a rebound effect;(2) the aggregated allocation effect was small because the change in the allocative distortion between capital and energy significantly enhanced energy intensity but was partly offset by the effect stemming from the change in the allocative distortion between capital and energy;and (3) the substitution of energy for labor increased energy intensity,but the aggregated substitution effect significantly reduced energy intensity because the substitution of capital for energy reduced energy intensity to a great extent.These findings were obtained at the national level and varied at die regional level.  相似文献   

2.
Since the reform and opening up,China’s export trade has maintained a rapid growth;meanwhile,China’s energy consumption has been increasing sharply. "High export and high energy consumption" has become the feature of China’s trade and economic development.In this paper,based on the input-output analysis approach,the authors have conducted an empirical study on the export trade and energy consumption of 21 trade industrial sectors.The results show that,China is a big net exporter of embodied energy.Assuming that the export growth rate of embodied energy maintains to be about 23.6%,the average annual growth rate of the past 32 years,and based on the input-output data of 2005,by 2030 China’s net export of embodied energy would be over eight times more than the aggregate energy production,which is obviously infeasible.As a country of very low per capita energy,China must change its export pattern,encourage or restrain the export of different industrial sectors according to their energy consumption intensity,and promote structural change of energy-efficient exported products,so as to achieve the sustainable development.Accordingly,the authors put forward some suggestions.  相似文献   

3.
In this paper,the authors have empirically analyzed the convergence in per capita GDP gap and the convergence in the variation of energy intensity with respect to the change of per capita GDP between China and eight developed countries.Then,the authors run a regression on the impact of decisive factors of economic growth on energy intensity and its change,so as to find out the economic mechanism of energy intensity gap changing with respect to the variation of economic growth.This study concludes that:First,there is a convergence in per capita GDP gap between China and the eight developed countries.With the convergence in per capita GDP gap,the energy intensity gap between China and eight different countries also converge,and the convergence rate of the latter is faster than that of the former,i.e.if the per capita GDP gap between China and the eight developed countries decreases by 1%,the energy intensity gap between them will correspondingly decrease by 1.552%.Second,the energy intensity decreases with the improvement of industrial structure,the rising of energy prices,the advances of technology,and the expansion of investment in fixed assets,and it slightly increases with the increase of FDI.Third,the energy intensity gap between China and eight developed countries narrows with the lessening of the difference in fixed assets investment,energy prices,and technological progress between China and eight developed countries,yet increases with the narrowing of the difference in FDI,and has no significant correlation with the difference in industrial structure.Fourth,the narrowing of difference in per capita GDP between China and the eight developed countries can result in the lessening of energy intensity gap,whose economic mechanism is that the decisive factors,such as difference in investment,technology,and the competition mechanism of prices,which can determine the difference in economic growth,can significantly affect the energy intensity gap.  相似文献   

4.
The discovery and use of fossil fuels have not only helped the evolution of human society from agricultural civilization to industrial civilization,but also caused serious environmental and climate problems.The earth is calling for a sustainable future,and a change from industrial civilization to ecological civilization based on the new"energy revolution".A macroscopic quantitative analysis of China’s environmental capacity and climate capacity shows that China is in urgent need of changing the extensive developing mode and having an energy revolution.It is foreseeable that fossil fuels will remain the most consumed source of energies in China now and in the next few decades.Although the efficient and clean use of fossil fuels are very important,this is not an energy revolution or the fundamental solution to environmental and climate problems.Unconventional gases including shale gas play an important role in the mitigation of environmental problems and climate change,but"shale gas revolution"or"shale gas era"is not suitable to China since the proportion of natural gas in primary energy structure in China can only be increased by a maximum of 20%.The transition of Chinese energy structure from fossil-fuels-dominating stage to multiple-energy-sources stage and then to a nonfossil-fuels-dominating stage is the inevitable future,with the help of great contribution from renewable energy and nuclear energy.Among renewable energies,the proportion of non-hydro renewable energies will gradually increase.Improvement of their market competitiveness(economic efficiency)relies on technological innovation.Renewable energies will be the main energy source for the earth in future.Despite the impact of the Fukushima nuclear disaster,the whole world,including China,will not give up nuclear energy development.Safe,steady,and large-scale development of nuclear power is a rational choice of China.Transition from nuclear fission power plant to nuclear fusion power plant is the inevitable future.Nuclear energy will be a sustainable energy source and another main energy source of the earth in future.China needs to enhance energy security consciousness,promote energy saving,and change the energy supply-demand patterns,that is the transition from"meet a too-fast-growing demand with an extensive supply"to"meet a reasonable demand with a rational supply".All countries need to work together to address global environmental problems and climate change.Energy revolution is the foundation for a sustainable future.With a wide range of international cooperation,the win-win cooperation is the only way of overcoming these challenges.  相似文献   

5.
Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tee) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tee that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors,  相似文献   

6.
This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005. Sectoral energy use was investigated when regional economic structure changed significantly. The changes of total primary energy consumption in Beijing are decomposed into production effects, structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method. Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect followed by the intensity effect, and the structural effect was relatively insignificant. The total and production effects were all positive. In contrast, the structural effect and intensity effect were all negative. Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial energy intensity. The results show that in this period, Beijing's economy has undergone a transformation from an industrial to a service economy. However, the structures of sectoral energy use have not been changed yet, and energy demand should be increasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak. As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered: agriculture, industry and service. However, further decomposition into secondary and tertiary sectors is definitely needed for detailed investigations.  相似文献   

7.
China achieved major progress in low-carbon development during the period of the 11th Five Year Plan (2006-2010). The increasing trend of energy intensity and carbon intensity of the economy as seen prior to 2005 was reversed to a sharp decreasing trend, leading to a 19% decrease in energy intensity and 21% decrease in carbon intensity in five years. The enhanced energy efficiency, mostly due to efficiency improvement in power and manufacturing sector, is the major driver of the decrease in carbon intensity of the economy. The development of renewable energy, despite its impressive growth rate, played a minor role because of its small share in the energy mix of the country. Energy con-sumption and energy-related carbon emissions per unit of area in building continued to grow at a lesser rate, which, combined with the fast growth of total building volume, led to fast growth in total energy consumption and carbon emissions in the sector. Similar trend is observed in the transportation sector whose total energy use and carbon emissions continued to grow fast despite slight improvement in energy efficiency. Agricultural energy use experienced a slight change and forestry made a major contribution to carbon sinks. Policy and institutional innovations helped build a solid system of rules for low-carbon development. Improving cost effectiveness of the system remains a major challenge for the next five year plan period.  相似文献   

8.
In this paper,the author uses super-efficiency DEA model to measure the national and regional energy efficiency in China;using spatial econometric model and from the perspective of geo-spatial spillover,the author interprets the spatial characteristics of energy efficiency and extracts the main factors that influence the regional energy efficiency.The analysis results show that:(1) the national and regional energy efficiency is consistent with inverted U-shaped curve,and the nationwide energy efficiency gap is increasing;(2) energy efficiency has the obvious effect of the spatial external effect,and when the government makes energy saving strategies,inter-regional energy cooperation and the proliferation of advanced production technology should be given more priority;(3) energy efficiency has significant negative correlation with government intervention,industrial structure,ownership structure,the energy consumption structure,and resource endowments,and has positive correlation with the degree of opening-up and energy price.  相似文献   

9.
In recent years, scientists have been increasingly interested in the energy embodied in traded goods among countries. In this article, the direct energy intensities in various economic sectors of China were calculated with the data of energy consumption and output value of each sector, and the input-output table was used to estimate the external energy consumption. The total energy intensity of all sectors was then obtained. From the data of international trade, the energy embodied in goods trade of China was estimated for the period of 1994-2001. During this period, the average energy intensity of imported goods was always higher than that of exported ones. As a country with a surplus in international goods trade, China actually imported net embodied energy in the past few years. The net embodied energy imported was at the same magnitude of the imported energy in the form of fossil fuels.  相似文献   

10.
Today the resources are becoming scarcer, which should not be regarded as unexhausted any more. Correspondingly, the production would be constrained by the scarcity of resources clearly. Then the economic researchers would pay much more attention to reducing the consumption of natural resources in the future. Therefore this paper brings foreword the conception of elasticity ratio of resource consumption based on the concept of elasticity and analyzes the relationship between the parameters. For the certain relationships between the elasticity ratio of resource consumption and resource consumption, this paper will try to reveal, to keep economy growing while resource consumption reducing, what conditions should be met as to the relationships among resource productivity, its growth rate, energy saving efficiency, economic growth rate and elasticity ratio of resource consumption. This paper proves the relationship between the China's energy consumption and economy growth using statistic data from 1978 to 2003.  相似文献   

11.
The problem of climate change is a global challenge.It is closely associated with social development and human survival,and it has a significant impact to all countries on energy development,economic competitiveness,technological innovation,and way of life.In recent years,with the rapid economic development in China,there is a rumor that the rapid growth of China’s carbon dioxide emission offset the efforts of the international community in reducing emissions,and China should bear the international responsibility corresponding to its significant role in greenhouse gas emission,which obviously are unfair and not objective.As this paper reveals,"China environment responsibility" that is the socalled "China environment threat" or theories,China has made a positive contribution to addressing the climate change in the past and China will still be the backbone on the protection of global climate in the future.  相似文献   

12.
This paper proposes to use DEA models with undesirable outputs to construct the Malmquist index that can be use to investigate the dynamic changes of CO 2 emission performance.With the index,the authors have measured the CO 2 emission performance of 28 provinces and autonomous regions in China from 1996 to 2007;with the convergence theory and panel data regression model,the authors analyze the regional differences and the influencing factors.It is found that the performance of CO 2 emissions in China has been continuously improved mainly due to the technological progress,and the average improvement rate is 3.25%,with a cumulative improvement rate of 40.86%.In addition,the CO 2 emission performance varies across four regions.As a whole,the performance score of eastern China is the highest.The northeastern and central China has relatively lower performance scores,and the western China is relatively backward.The regional differences are decreasing,and the performance of CO 2 emissions is convergent.The influence of some factors on the performance of CO 2 emissions is significant,such as the level of economic development,the level of industrial structure,energy intensity,and ownership structure.The influence of some factors,such as opening-up to the outside world,on the performance of CO 2 emissions is not significant..  相似文献   

13.
In this paper,the authors have analyzed the relationship between energy intensity gap and GDP per worker gap of China’s western and eastern provinces over the period 1997-2006.Using panel data model with lag adjustment,taking the above provinces and six industrial sectors (agriculture,forestry,animal husbandry,and fisheries,industry,construction industry,transport,storage and post & telecommunications,wholesale and retail trades & catering industry,and other sectors of tertiary industry.) as the investigated subjects,the authors have conducted empirical study on the convergence of GDP per worker gap and the convergence of energy intensity gap with respect to the variation of GDP per worker gap,and have concluded that:First,the GDP per worker gap of the six industrial sectors and provinces are convergent,and of this,the convergence rate of GDP per worker gap of Construction Industry is the fastest,while that of Industry is the slowest.Second,the overall energy intensity gap between eastern and western provinces is convergent,that is,with the narrowing of GDP per worker gap between eastern and western provinces,the energy intensity gap converges,but its convergence rate is slower than that of GDP per worker gap.Third,energy intensity gap between various industrial sectors of the east and the west is either convergent or divergent,and there are differences.The energy intensity gap of agriculture,forestry,animal husbandry,and fisheries,industry,and construction industry is convergent,while that of the other three industrial sectors is divergent.Fourth,the convergence of the overall energy intensity of the western provinces is not in conformity with the convergence of the various industrial sectors,and there are significant differences,indicating that the western provinces and autonomous regions should take measures to more effectively improve their overall energy utilization efficiency at the industrial sector level.  相似文献   

14.
The establishment of a global multi-regional carbon market is considered to be a cost effective approach to facilitate global emission abatement and has been widely concerned.The ongoing planned linkage between the European Union’s carbon market and a new emission trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions.To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants,this article adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems.Our model includes 20 economic sectors and 19 regions,and describes in detail 17 energy technologies.Bundled with fossil fuel consumptions,the emission permits are considered to be essential inputs in each of the production and consumption activities in the economic system to simulate global carbon market policies.Carbon emission permits are endogenously set in the model,and can be traded between sectors and regions.Considering the current development of the global carbon market,this study takes 2020 as the study period.Four scenarios(reference scenario,independent carbon market scenario,Europe Union(EUh-Australia scenario,and China-EU-Australia scenario) are designed to evaluate the impact of the global carbon market involving China,the EU,and Australia.We find that the carbon price in the three countries varies a lot,from $32/tCO2 in Australia,to $17.5/tCO2 in the EU,and to $10/tCO2 in China.Though the relative emission reduction(3%) in China is lower than that in the EU(9%) and Australia(18%),the absolute emission reduction in China is far greater than that in the EU and Australia.When China is included in the carbon market,which already includes the EU and Australia,the prevailing global carbon price falls from $22 per ton carbon dioxide(CO2) to $12/tCO2,due to the relatively lower abatement cost in China.Seventy-one percent of the EU’s and eighty-one percent of Australia’s domestic reduction burden would be transferred to China,increasing 0.03%of the EU’s and 0.06%of Australia’s welfare.The emission constraint improves the energy efficiency of China’s industry sector by 1.4%,reduces coal consumption by3.3%,and increases clean energy by 3.5%.  相似文献   

15.
Foreign trade drives China’s growth,but as the trade scale continues to expand,the carbon emissions also increase quickly.Based on the industry panel data from 1996 to 2010,this paper calculates carbon emissions of 27manufacturing industries.According to the intensity of carbon emissions,this paper divides the manufacturing sectors into low carbon and high carbon manufacturing industry and then analyzes the carbon emission trends.Next,the paper uses the feasible generalized least square regression to verify the existence of environmental Kuznets curve(EKC)of the manufacturing industry’s carbon.In order to investigate the carbon leakage problem,the regression also includes the interaction term between trade and industrial value added.Our findings are as follows:the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry accord with the EKC curve,but have a linear relationship with the high carbon manufacturing industry;trade reduces the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry,but it increases those of the high carbon manufacturing industry;for the whole manufacturing industry and low carbon manufacturing industry,there is no carbon leakage,but it exists in the high carbon manufacturing industry.On the whole,pollution haven hypothesis does not hold up in China,and China does not need to limit industry foreign trade to reduce the emission of CO2.But the manufacturing industry will still be the main engine of the economic growth,and therefore our country should make an effective low-carbon policy,introduce advanced technology,increase R&D investment into lowcarbon technologies,and upgrade and transform the original equipment to change the backward mode of production.  相似文献   

16.
Analysis of CO2 emissions peak:China’s objective and strategy   总被引:1,自引:0,他引:1  
Establishing positive and urgent targets for CO2 reduction and emission peak,and promoting energy conservation and energy structure adjustment are among the strategies to address global climate change and CO2 emissions reduction.They are also means to break through the constraints of domestic resources and environment,and internal needs,to achieve sustainable development.Generally speaking,a country’s CO2 emission peak appears after achieving urbanization and industrialization.By then,connotative economic growth will appear,GDP will grow slowly,energy consumption elasticity will decrease,and energy consumption growth will slow down-dependent mainly on new and renewable energies.Fossil fuel consumption will not increase further.When CO2 emission reaches its peak,the annual reduction rate of CO2 intensity of GDP is greater than GDP annual growth rate;and the annual reduction rate of CO2 intensity of energy use is greater than the annual growth rate of energy consumption.Therefore,three important approaches to promotion of CO2 emission peak can be concluded:maintaining reasonable control of GDP growth,strengthening energy conservation to significantly reduce the GDP energy intensity,and optimizing the energy mix to reduce the CO2 intensity of energy use.By around 2030,China will basically have completed its rapid development phase of industrialization and urbanization.Connotative economic growth will appear with the acceleration of industrial structure adjustment The target of GDP energy intensity will still be to maintain an average annual reduction of 3%or higher.The proportion of non-fossil fuels will reach 20-25%,and the aim will be to maintain an average annual growth rate of 6-8%.The total annual energy demand growth of 1.5%will be satisfied by the newly increased supply of non-fossil fuels.The annual decline in CO2 intensity of GDP will reach 4.5%or higher,which is compatible with an average annual GDP growth  相似文献   

17.
Household consumption is one of the important factors that induce COL emission. Based on input-output model, this article calculated the intensity of CO2 emission of different income groups and seven provinces in China, and then estimated total CO2 emission induced by urban household consumption from 1995 to 2004 in China based on statistic data of household living expenditure. The results show that CO2 emission per capita induced by household consumption had increased from 1583 to 2498 kg CO2 during 1995-2004. The ratio of consumption-induced CO2 emission to total CO2 emission had risen from 19% to 30% in the past decade. Indirect CO2 emission accounted for an important part of the consumption-induced emission, the ratio of indirect emission to consumption-induced emission had risen from 69% to 79% during the same period. A significant difference in consumption-induced CO2 emission across different income groups and different regions has been observed. COs emission per capita of higher income groups and developed regions increased faster than that of lower income groups and developing regions. Changing lifestyle has driven significant increase in CO2 emission. Especially, increases in private transport expenditure (for example, vehicle expenditure) and house building expenditure are key driving factors of growth in consumption-induced COL emission. There are big differences in the amount of CO2 emission induced by change in lifestyle across different income groups and provinces. It can be expected that lower income households and developing regions will increase consumption to improve their livings with income growth in the future, which may induce much more CO2 emission. A reasonable level of CO2 emission is necessary to satisfy human needs and to improve living standard, but a noticeable fact is that CO2 emission per capita induced by household consumption in developed areas of China had reached a quite high level. Adjustment in lifestyle towards a low-carbon society is in urgent need.  相似文献   

18.
The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China’s transportation carbon emission.Then,a quantitative analysis was performed to study the factors influencing China’s transportation carbon emissions from 1991 to 2008,which are identified as transportation energy efficiency,transportation structure and transportation development.The results showed that:(1)The impact of transportation development on transportation carbon emissions showed pulling function.Its contribution value to carbon emissions remained at high growth since 1991 and showed an exponential growth trend.(2)The impact of transportation structure on transportation carbon emissions showed promoting function in general,but its role in promoting carbon emissions decreased year by year.And with the continuous optimization of transportation structure,the promoting effect decreased gradually and showed the inversed"U"trend.(3)The impact of transportation energy efficiency on transportation carbon emissions showed a function of inhibition before pulling.In order to predict the potential of carbon emission reduction,three scenarios were set.Analysis of the scenarios showed that if greater intensity emission reduction measures are taken,the carbon emissions will reduce by 31.01 million tons by 2015 and by 48.81 million tons by 2020.  相似文献   

19.
Strategic environmental assessment (SEA) in China has developed rapidly since it was introduced into China in the 1990s. Chinese government promulgated the Environmental Impact Assessment Law of China (hereinafter referred to as the EIA Law) in 2002. In this law, it is stipulated clearly that regional and sector plans should be assessed. Through investigating materials and analyzing literatures, this article analyses the practical and academic study achievements of SEA in China that have been achieved since the EIA Law was implemented, probes into the current situation of the main level of SEA in China-plan EIA, then summarizes the development characteristics, and eventually, puts forward the development trends of SEA in China. The research conclusions can offer the foundations for comprehending systematically the progress of SEA in China.  相似文献   

20.
Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China’ s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号