首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sexual size dimorphism may evolve as a result of both natural and sexual selection. In polygynous mammals, the main factor resulting in the evolution of large body size in males is the advantage conferred during competition for mates. In this study, we examined whether sexual selection acts on body size in mature fallow bucks (Dama dama) by examining how the following traits are inter-related: age, body (skeletal) size, body mass, prerut dominance rank, rut dominance rank and mating success. This is the first study to examine how all these factors are together related to the mating success of a large sexually dimorphic and polygynous mammal. We found that male mating success was directly related to body size, but not to body mass. However body mass was related to prerut dominance rank which was in turn strongly related to rut dominance rank, and thus there was an indirect relationship between mating success and body mass. Rut dominance rank was the variable most strongly related to mating success. Mating success among mature males was unrelated to age. We conclude that larger mature fallow bucks have advantages over other males when competing for matings, and sexual selection therefore continues to act on sexual size dimorphism in this species. Heavier fallow bucks also have advantages, but these are mediated through the dominance ranks attained by males before the rut.  相似文献   

2.
Adaptive female choice is thought to have led to the evolution of nutritionally valuable nuptial gifts in many insect species. However, in several dance fly species, males offer and females accept “empty gifts” with no nutritional value. In the species studied here, Empis snoddyi Steyskal, males produce empty balloons comprised of hundreds of silk bubbles and form mating swarms that females approach to investigate males. Males within the swarm engage in agonistic interactions. The empty balloon has been hypothesized to be an indicator of male condition such that males with larger balloons are predicted to have higher mating success and be more successful in male-male interactions than males with smaller balloons. We examined the role of male body size and balloon size in the context of intersexual and intrasexual selection. We found that neither male body size nor balloon size affected the outcome of pairwise male-male interactions. Using multiple-regression techniques, we found significant linear selection for increasing male body size and decreasing balloon size associated with mating success, a surprising result given a positive relationship between male body size and balloon size. A visualization of selection showed the highest peak of male mating success for larger males with intermediate-size balloons. These results can be explained by a trade-off between long-range attraction of females using large balloons and close-range attraction of females via improved flying efficiency associated with smaller balloons. Both male body size and balloon size are important components in determining male mating success; however, the empty balloon does not appear to play a typical role as a sexually selected ornament. Received: 29 December 1997 / Accepted after revision: 7 October 1998  相似文献   

3.
In the dance flyEmpis borealis (L.) (Diptera: Empididae) females gather to swarm and males visit swarms for mating. A model was constructed, based on previously published data, simulating how males may choose among females of different sizes in swarms of different sizes. The focal question was, what influences the number of individuals in the swarm in this and possibly other swarming insects? The relationships between original swarm size and both the number of males arriving per minute and the proportion of males mating are both logarithmic. The model predicted that if these relationships were linear, or if males were able to judge absolute female size, the mean swarm size should increase and be at least four times as large as those found in the field. The only type of male mate choice strategy that gave rise to very large swarms (>25) was size-related choice (if males are able to assess the size of a female in relation to the entire population and not merely to the swarm). Furthermore, no swarming behaviour would occur if males mate independently of swarm size. Thus, the numbers of females attending a given swarm site are influenced by male arrival pattern, male preference for larger swarms, the inability of males to judge the absolute body size of females, and female polyandry. Males searching for mates seem to prefer larger swarms than females searching for a swarm to join, but the mean swarm size is primarily set by the swarm size preference of females. Optimal swarm size predicted from the model was 4.68±0.53 females. In order to test model predictions, 69 natural swarm sites were studied during one season. The mean swarm size was 4.85±4.54 females (median 4.03), and about 90% of swarms consisted of 11 females or fewer. Predicted and observed swarm size did not differ significantly.  相似文献   

4.
Male mating status can affect female reproductive output if male ejaculate investment declines over consecutive matings. Accordingly, females are predicted to mate preferentially with virgin males. In mildly polyandrous lepidopterans, female fitness is less affected by reduced male investment than in more polyandrous species, and so the predictions for female mating preferences are less clear. We examined female mating preferences in the mildly polyandrous almond moth, Cadra cautella, in which ejaculate size does not affect female reproductive output. First, we allowed females to mate with virgin or once-mated males, in which the males were presented individually or simultaneously. We recorded the latency to mating and, in the case of the simultaneously presented trials, the identity of the successful, copulating male. We found that females mated more frequently with mated males (when simultaneously presented with both males), yet females did not differ in the time taken to initiate copulation with any male. We further examined if this mated male advantage was due to differential mate detection or locomotory behaviour of the male treatments. We tested the ability of virgin and mated males to locate a receptive female within a wind tunnel using long-distance pheromone cues and recorded their activity budget. We found no difference in the ability of mated or virgin males to locate or approach a receptive female, or in their activity levels. These data suggest a female preference for mated males in this species, a preference that may minimise other potential costs of mating.  相似文献   

5.
Sexual selection and species recognition play important roles in mate choice; however, sexual selection preferences may overlap with traits found in heterospecifics, producing a conflict between sexual selection and species recognition. We examined female preferences in Xiphophorus pygmaeus for male traits that could provide both types of information to determine how females use multiple cues when preferences for these cues would conflict. We also examined X. pygmaeus behavior in the field to determine if females have the opportunity to choose mates. As no male-male competition was observed in the field, and females occasionally chased males from feeding areas, females apparently have the opportunity to exercise mate choice in their natural habitat. In the laboratory, female X. pygmaeus used body size as a sexual selection cue, preferring large heterospecifics (X. cortezi) to small conspecifics. Females also preferred barless X. cortezi over barred X. cortezi when males were size matched. Because X. pygmaeus males do not have bars, this preference suggests that X. pygmaeus females use vertical bars in species recognition, and that large body size and vertical bars are conflicting cues. However, X. pygmaeus females did not have a preference for males of either species when sexual selection and species recognition cues were presented concurrently. This result was surprising, because preferences for species recognition cues are often assumed to be stronger than sexual selection cues. We suggest that females may be using additional species-specific cues in mate choice to prevent hybridization.  相似文献   

6.
Male fiddler crabs Uca musica sometimes build sand hoods and male Uca beebei sometimes build mud pillars next to their burrows to which they attract females for mating. Mate-searching females preferentially approach these structures and subsequently mate with structure builders. Here we show that the preference for structures is not species-specific and argue that it may not have evolved for mate choice. When not near burrows, many species of fiddler crabs approach and temporarily hide near objects, suggesting that hoods and pillars may attract females because they elicit this general predator-avoidance behavior. To test this sensory trap hypothesis we individually released female U. musica, U. beebei and Uca stenodactylus, a non-builder, in the center of a circular array of empty burrows to which we added hoods and pillars and then moved a model predator toward the females. All species ran to structures to escape the predator and the two builders preferred hoods. Next, we put hood replicas on male U. beebei burrows and pillar replicas on male U. musica burrows. When courted, females of both species preferentially approached hoods as they did when chased with a predator. However, males of both species with hoods did not have higher mating rates than males with pillars perhaps because hoods block more of a male's visual field so he sees and courts fewer females. Sexual selection may often favor male signals that attract females because they facilitate general orientation or navigation mechanisms that reduce predation risk in many contexts, including during mate search.  相似文献   

7.
Female preference for dominant males is widespread and it is generally assumed that success in male-male competition reflects high quality. However, male dominance is not always attractive to females. Alternatively, relatively symmetric individuals may experience fitness advantages, but it remains to be determined whether males with more symmetrical secondary sexual traits experience advantages in both intra- and intersexual selection. We analysed the factors that determine dominance status in males of the lizard Lacerta monticola, and their relationship to female mate preference, estimated by the attractiveness of males' scents to females. Sexually dimorphic traits of this lizard (head size and femoral pores) appear to be advanced by different selection pressures. Males with relatively higher heads, which give them advantage in intrasexual contests, were more dominant. However, head size was unimportant to females, which preferred to be in areas marked by relatively heavier males, but also by males more symmetric in their counts of left and right femoral pores. Chemicals arising from the femoral pores and other glands might honestly indicate quality (i.e. related to the symmetry levels) of a male to females and may result from intersexual selection. Females may use this information because the only benefit of mate choice to female lizards may be genetic quality. Chemical signals may be more reliable and have a greater importance in sexual selection processes of lizards than has previously been considered.  相似文献   

8.
Sexual selection via female choice can afford preferred males comparably higher mating success than those males that lack preferred traits. In addition, many models of sexual selection assume that both male traits and female preferences are heritable. In this study we test whether females of the poeciliid fish, Heterandria formosa, have repeatable pre-copulatory preferences for larger males. We also test whether female pre-copulatory preferences are always reliable indicators of male mating success. When given a choice between a large and a small male, females prefer larger males, and the repeatability of this preference is high. Although there are no overall differences in male mating success between large and small males, large males have a higher mating success when they are the first to mate than when they are the second to mate. Likewise, preferred males also have higher mating success when they are the first to mate than when they mate second. Therefore, the repeatable female preferences observed in this study only predict male mating success when the preferred male mates first. These results illustrate that even significantly repeatable female preferences do not translate into male mating success, which is an assumption of many examinations of the importance of female choice in sexual selection.  相似文献   

9.
J. Lin  D. Zhang 《Marine Biology》2001,139(6):1155-1158
The caridean shrimp Lysmata wurdemanni (Gibbes) displays protandric simultaneous hermaphroditism with out-crossing, but not all males become simultaneous hermaphrodites (euhermaphrodites). In this laboratory study, we attempted to determine why some shrimp remain males. In our experiment, we grew L. wurdemanni from postlarvae to adults in several group sizes and observed their reproductive function. We found that all shrimp reared in isolation become euhermaphrodites. When cultured in a group, the proportion of shrimp remaining male decreased with increasing group size. Except for those that mated within a day, inter-molt euhermaphrodite-phase shrimp (with or without embryos) and inter-molt male-phase shrimp fertilized eggs successfully. On the other hand, euhermaphrodite shrimp can only mate as females and have their eggs fertilized during a narrow post-molt window (less than 12 h) in each molt cycle (10 days). The fertilization rate of male-euhermaphrodite pairs was similar to that of euhermaphrodite-euhermaphrodite pairs. There are at least two non-exclusive explanations for the persistence of male shrimp in a group. In certain group compositions, an individual may gain more reproductive fitness as a large male with multiple mating partners than as a small female with low clutch size. Alternatively, the presence of male-phase individuals, with variable molt-cycle duration (5-8 days), may be necessary to ensure mating. This study is the first direct experimental demonstration of social control of sex change in the decapod crustaceans.  相似文献   

10.
The purpose of my study was to determine whether male body size, a trait known to be important to mating success, covaries with offspring performance. I tested the effects of male body size on the performance of Bufo bufo tadpoles reared at two food levels by mating large, small, and naturally-mated males to the same females. Survival of tadpoles in the high-food environment was affected by male size class, but in the opposite way to that expected. Tadpoles sired by large males had the lowest survival, and those sired by small males the highest. Neither body size at metamorphosis nor larval period were affected by male size class alone, but male size interacted with the female contribution: tadpoles sired by large males had short larval periods and large size at metamorphosis with some females,but long larval periods and small body sizes with others. Food level had a significant effect on both size at metamorphosis and larval period, and interacted with female contribution, but not male size class. This indicated that female contribution to tadpoles was dependent on food level, but that the effects of male size were not differentially expressed by tadpoles at the two food levels. My results indicate that traits with a direct effect on offspring fitness are not enhanced by large male body size, yet some males and females produced offspring with significantly better performance. I suggest that evolutionary change in this mating system is unlikely to occur through the non-random mating of males based on body size alone.  相似文献   

11.
We focused on male harassment on different female color morphs of the damselfly Ischnura elegans and on variation in morph-specific mating avoidance tactics by females. In I. elegans, one of the female morphs is colored like the conspecific male (andromorphs) while the other morphs are not (gynomorphs). Our first goal was to quantify morph-specific male mating attempts, hence male harassment, in populations with manipulated population parameters (densities, sex ratios, and proportion of andromorphs). Second, we examined the female's perspective by looking for potential differences in morph-specific mating avoidance tactics and success of those tactics in a natural population. Differences in population conditions did influence the number of male mating attempts per morph. The less frequent female morph was always subject to fewer mating attempts, which contradicts earlier hypotheses on mimicry, but supports those that assume that males learn to recognize female morphs. Gynomorphs occupy less open habitat and often fly away when a male approaches, while andromorphs use more open habitat, do not fly large distances and directly face approaching males. Female morphs did not differ in the proportion of successful mating-avoidance attempts. Our results suggest that the maintenance of the color polymorphism is most probably the result of interactive selective forces depending on variation in all population conditions, instead of solely density- or frequency-dependent selection within populations.  相似文献   

12.
Parasites can decrease male mating success in host species in various ways, in particular by affecting male competitive ability for access to females. However, male-male competition can take different forms (i.e. interference vs exploitation competition) and which type of competition is most affected by parasites is not always clear. We investigated the influence of two acanthocephalan parasites Pomphorhynchus laevis and Polymorphus minutus on the pairing success of their intermediate host, Gammarus pulex, using field-based studies and complementary laboratory-based studies. We first studied male pairing success in the field using four large samples of paired and unpaired individuals collected at different dates. In three of the samples, the effects of size and parasite infection were significant, whereas for one sample only male size had a significant effect. There was no difference in size distributions between infected and uninfected gammarids. Large males were paired more often than smaller males, and uninfected males were paired more frequently than infected males, the pairing success of P. minutus-infected males being more severely affected than that of P. laevis-infected males. We then experimentally tested the ability to enter into precopula with a receptive female in the presence or absence of competitors. In competitive situations, the pairing success of P. laevis- and P. minutus-infected males was significantly lower than that of uninfected males, with pairing success being more affected in P. laevis-infected than in P. minutus-infected males. In the absence of competition, males infected with P. laevis were significantly less likely to enter into precopula compared with uninfected males and P. minutus-infected males, whereas there was no difference between uninfected and P. minutus-infected males in their inclination to pair with a receptive female. However, for both parasites, latency time to pair formation was significantly shorter for uninfected than for infected males. In a third experiment, we tested for a potential effect of vertical segregation on the pairing success of infected and uninfected males, but found no evidence for it. We conclude that infected males may be less competitive than uninfected males in competition by exploitation between males for females.  相似文献   

13.
In natural populations of golden egg bugs ( Phyllomorpha laciniata), females lay eggs on plants where they develop unattended, or on conspecifics, where they remain firmly glued until the nymphs hatch and start an independent life. Mortality rates among eggs laid on plants are higher than among eggs carried by adults. Because females cannot lay eggs on themselves, in order to improve offspring survival, they have to lay eggs on other individuals. Two hypotheses have been proposed to explain egg carrying: (1) the mating pair intraspecific brood parasitism hypothesis suggests that females dump eggs on copulating pairs, and (2) the paternal care hypothesis suggests that the system is driven mainly by males accepting eggs to improve the survival rates of their own offspring. Our data from the field show that 77% of the eggs are carried by males, because more males than females carry eggs, and because males carry a greater number of eggs. In addition, we show that mating males carry more recently laid eggs than single males. These results support the view that egg carrying is performed predominantly by males and that eggs are laid on males by their current mating partner, probably between repeated copulations. Males are likely to accept eggs, despite intermediate levels of paternity, because they cannot discriminate in favour of their own eggs, because rejected eggs will face 97% mortality rates on plants, and because they do not suffer mating costs when they carry eggs. However, females carry 23% of the eggs, but no differences in egg carrying have been found between mating and single females, suggesting that this is not the result of egg dumping while females are copulating. Egg carrying by females could reflect low levels of intraspecific parasitism, which is likely to reflect the low rate of successful attempts by egg-laying females who try to oviposit on other conspecifics rather indiscriminately, in an effort to improve the survival of their offspring.  相似文献   

14.
In butterflies and other insects, fecundity generally increases with female adult weight. Hence, most butterflies are essentially "capital breeders", because nutrients acquired during the larval stage are stored and subsequently used for egg production during the adult stage. However, in some species, males transfer a large nutritious ejaculate to the female at mating. These females can partly be characterized as "income breeders", and female mass can potentially be decoupled from fecundity to some extent. In the gift-giving green-veined white butterfly Pieris napi, it has been shown that female fecundity and longevity increase with number of matings and also that females mature at smaller size under poor food conditions compared to males. So it has been suggested that females can compensate for their smaller size through nuptial feeding. Here we test this hypothesis in P. napi by assessing female fecundity and longevity in relation to female mass and polyandry. The results showed no support for the hypothesis. Smaller females were not capable of increasing their mating rate to compensate for a low weight at eclosion. Instead, larger females remated sooner. Also, smaller females suffered from both a reduced daily and total fecundity compared to larger females and this decrease in fecundity was independent of female mating status, i.e. females allowed to mate only once and multiply mated females suffered to the same extent from their smaller size.  相似文献   

15.
We examined how mating success varied in relation to age, weight, body size, and display behavior among great bustard Otis tarda males. The estimated mating success was strongly skewed, with 45% of adult males being involved in copulation attempts and only 9.7% actually seen copulating successfully. Unlike most birds, body size continued increasing in great bustards several years after reaching sexual maturity. Age, weight, and display effort were all significant and independent predictors of male mating success. The higher display effort involved performing longer full-display bouts. Older males could detach from the male flock earlier in the season as well as on each day and spend longer seasonal and daily periods displaying as solitary birds, which contributed to increase their mating success. In contrast, males weighing more did not invest more in display, which suggests that they could be recognized as dominants by other males and selected by females through assessment of their plumage sexual traits. In contrast to most other bird species, the system described for great bustards resembles that found in some lek-mating ungulates, where social rank is a complex trait determined by both age and mass, and as in these mammals, it suggests that sexual selection continues to favor a high male weight in this extremely sexually dimorphic species.  相似文献   

16.
Selection is expected to maximize an individual’s own genetic reward regardless of the potential fitness consequences for its sexual partners, which may cause sexual conflict. Although performance in holometabolous insects typically diminishes with age, old male mating advantage has been documented in a few species. Whether this pattern arises from female preference for older males based on, e.g., pheromone blends (intersexual selection), or from increased eagerness to mate in older compared to younger males is currently debated. We explore the mechanistic basis of old male mating advantage, using a series of experiments including behavioral as well as manipulative approaches, in the tropical butterfly Bicyclus anynana. Consistent with the residual reproductive value hypothesis, old male mating advantage was associated with a greater eagerness to mate, evidenced by a two times higher flying and courting activity in older than in younger males. In contrast, we found only limited support for a contribution of female preference for older males based on pheromone composition, although male sex pheromones clearly do play a role in mating success. Our results suggest that male behavior may play a primary role in old male mating advantage, and that pheromones are likely of secondary importance only. Male mating success was related to higher overall pheromone titers rather than variation in a single component. A dominant importance of male behavior in determining mating success may result in sexual conflict.  相似文献   

17.
Summary Non-random mating by size (NRMS) plays a central role in the study of sexual selection and the evolution of mating systems. Theory suggests that NRMS should be influenced by conflicting demands (e.g., predation risk, hunger); few experimental studies, however, have addressed these effects. We used a factorial experiment to examine the influence of predatory green sunfish and food deprivation on NRMS in male and female stream water striders, Aquarius remigis. As predicted by theory, food deprivation decreased the large-male mating advantage. The influence of predation risk, however, went against existing theory; that is, risk increased the large male mating advantage. The degree of large-male mating advantage was negatively related to a measure of the rate of male harassment of females. A behavioral mechanism that can explain these patterns emphasizes the contrasting effects of different competing demands on male harassment rates, female resistance and the role of male size in overcoming female resistance. Females usually resist male mating attempts. Successful mating occurs when males overcome female resistance. If harassment rates (of females by males) are low, larger males have a mating advantage over smaller males perhaps because females resist heavily and thus only larger males can overcome female resistance. If, however, male harassment rates are very high, female resistance might be swamped; mating should then be more random with respect to male size. Food deprivation increases gerrid activity and thus increases harassment rates which should then reduce NRMS. In contrast, risk decreases gerrid activity, thus decreasing harassment rates and increasing NRMS. Females did not show significant NRMS. Females did, however, show a pattern of change in NRMS that is consistent with male choice for larger females. Correspondence to: A. Sih  相似文献   

18.
Field studies demonstrate that natural populations of a group of water striders (Heteroptera: Gerridae) that share a common mating system are characterized by weak assortative mating by size and by large sizes of mating males and females relative to single individuals. This study presents an experimental assessment of the components of mating that may contribute to these mating patterns. The effects of male and female body size on each of three components of mating were studied in three water strider species in the laboratory. Large females of all three species mated more frequently, copulated for longer and were guarded longer than small females. Large males mated more frequently than small males in all three species, and also guarded females for longer in the two species where the average of mate guarding was long. However, we found an antagonistic effect of male size on copulation duration: small males copulated for longer than large males in all three species. We show that the combined effects of these size biases mimic the mating patterns found in the wild, e.g. weak and variable assortative mating, and stronger and less variable size ratios of mating versus non-mating females relative to males. We suggest that the antagonistic effects of male size on copulation and guarding duration may be a key source of interpopulational variation in assortative mating and sexual selection on male size. Further, neither spatial or temporal covariation in size, nor mechanical constraints, caused the assortative mating observed here in this group of water striders. Some combination of male and female choice (either active or passive forms) of large mates and male-male exploitation competition for mates play potentially important roles in producing population level assortative mating in water striders. Received: 17 March 1995/Accepted after revision: 28 October 1995  相似文献   

19.
Summary Female dance-flies, Empis borealis L., gather to swarm, and males carrying nuptial gifts visit swarms for mating. Field observations and experiments were performed on this behaviorally sex-role reversed species to test models of lekking behavior. The key predictions were: (1) female preference model: male visiting rate and mating rate should increase with the number of females in swarm (swarm size), (2) hotspot model: male visiting rate should be independent of swarm size, and (3) hotshot model: swarm size should be positively correlated with the body size of the largest female in swarm. We found that male visiting rate and mating rate increased with swarm size, and that mating rate per female increased with swarm size. Males also mated more often in larger swarms than in smaller ones. Both males and females visited swarm sites even in the absence of other individuals. When females were successively removed from swarm sites more males than females on average arrived at these sites: 2.25 males per female. When no individuals were present at the swarm site, arriving males moved on to another site, whereas arriving females generally stayed. Larger experimental swarm-markers attracted both more males and more females and even more males when swarming females were present. There was no correlation between mean or median female size in swarms and the number of females in swarms. Thus, the female preference model and the hotspot model were corroborated, while other models were judged unlikely to explain swarming behavior in E. borealis. Correspondence to: B.G. Svensson  相似文献   

20.
Contrary to vertebrates, sperm production in insects may bear considerable costs for males. This is especially true in species that donate spermatophores containing sperm and nutrient-rich accessory gland products like in butterflies. Hence, spermatophores at first and subsequent copulations can differ in a quantitative and qualitative way. Such effects have particularly been shown in polyandrous species providing large spermatophores. Here we experimentally tested the effect of male mating status (virgin male vs recently mated male) on copulation duration, spermatophore size and females’ fitness components in a monandrous butterfly Pararge aegeria that typically donates small spermatophores. Copulations with non-virgin males lasted on average five times longer than that with virgin males and resulted in a spermatophore which was on average three times smaller. Number of eggs laid and female life span were not affected by the mating status treatment, but there was a significant effect on the number of living caterpillars a female produced, as copulations with virgin males resulted in higher numbers of larval offspring. Interestingly, the difference in spermatophore mass at the first and the second copulation increased with male body size. This suggests differential spermatophore allocation decisions among males of different size. Consequences for females and potential mechanisms influencing female fitness components are discussed. Given the small absolute size of spermatophores in P. aegeria, components other than consumable nutrients (perhaps hormones) should cause the observed effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号