首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
An approach to rapid soil testing which involved the use of simple solvent extraction methods was developed. The analytes of interest were priority pollutants of low water solubility which could not be readily removed from the soil using water. Direct toxicity testing of the soil samples by Microtox showed a high background toxicity which prevented realistic toxicity data from being obtained for the contaminants present. A range of different extraction solutions was used in an attempt to extract the contaminants while eliminating the matrix effects of the soil. It was necessary that the solvents selected for extraction of the soil samples were not of significant toxicity, as this could potentially mask the toxic effects of any compounds extracted from the soil. The extraction efficiencies of solvent systems were evaluated using pentachlorophenol (PCP) as a model compound of known toxicity in the Microtox assay. A rapid and cost-effective method was developed in order to determine the amount of PCP recovered from the soil by the extraction solvents employed. This method consisted of a solid phase extraction (SPE) step followed by quantification using capillary electrochromatography (CEC). Recoveries were greater when a higher proportion of organic solvent (methanol) was used in the extraction process, and lowest when water was used. An extraction based on water could provide information on the potential for leaching of contaminants from the soil into nearby water bodies in an environmental setting. An organic solvent extraction method could indicate how much toxicity soil-dependent organisms might be exposed to through ingestion. Extraction based on 50% (v/v) methanol in water was considered to be the most suitable overall extraction solution for soil screening, given that this permitted extraction of the water-insoluble compound PCP at a level which was clearly toxic in the Microtox assay while also retaining the capability to extract water-soluble contaminants.  相似文献   

2.
Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe3+/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.  相似文献   

3.
Greater understanding of the mobility of polychlorinated aromatic compounds in soils is needed to investigate contamination and design suitable remediation strategies for sites contaminated with wood-preserving oil. The objectives of this study were (1) to develop a suitable aqueous batch extraction method for soil containing wood-preservative residues; (2) to determine partition coefficients for the primary contaminants [pentachlorophenol (PCP), polychlorinated dibenzo-p-dloxins (PCDDs), and polychlorinated dibenzofurans (PCDFS)] in oil, soil, and aqueous phases; and (3) to evaluate the potential soil migration of the primary contaminants. In a three-phase oil-soil-water mixture, PCP, PCDDs, and PCDFs were partitioned to the greatest extent in the oil phase. These results suggest that the migration of contaminants can occur in a saturated subsurface soil zone containing an oil phase at a wood-preserving site. In the absence of a free oil phase, PCDDs and PCDFs were highly partitioned onto soil and were considered non-leachable in the aqueous phase. However, PCP was considered highly teachable from contaminated soil containing only an aqueous liquid phase. Results from this study Indicate that removal of any free oil phase present in subsurface soil should have highest priority during the cleanup of contaminated wood-preserving sites.  相似文献   

4.
Greater understanding of the mobility of polychlorinated aromatic compounds in soils is needed to investigate contamination and design suitable remediation strategies for sites contaminated with wood-preserving oil. The objectives of this study were (1) to develop a suitable aqueous batch extraction method for soil containing wood-preservative residues; (2) to determine partition coefficients for the primary contaminants [pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFS)] in oil, soil, and aqueous phases; and (3) to evaluate the potential soil migration of the primary contaminants. In a three-phase oil-soil-water mixture, PCP, PCDDs, and PCDFs were partitioned to the greatest extent in the oil phase. These results suggest that the migration of contaminants can occur in a saturated subsurface soil zone containing an oil phase at a wood-preserving site. In the absence of a free oil phase, PCDDs and PCDFs were highly partitioned onto soil and were considered non-leachable in the aqueous phase. However, PCP was considered highly leachable from contaminated soil containing only an aqueous liquid phase. Results from this study indicate that removal of any free oil phase present in subsurface soil should have highest priority during the cleanup of contaminated wood-preserving sites.  相似文献   

5.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   

6.
This work proposes a new potential application of waste coal fly ash as a K fertilizer support. Fly ash was reacted with KOH to facilitate the impregnation of K as well as to enhance the bonding force. In particular, the applied process resulted in a significant slow-releasing characteristic of fertilizer elements. To examine the effect of K impregnation, a few detailed leaching tests were carried out in terms of process variables such as reaction time and temperature, sintering time and temperature, and KOH concentration. The current experiment presented an optimum preparation condition that is competitive with conventional commercial fertilizers. The manufactured ash fertilizers inhibited release of the K elements. It was also found through the continuous leaching test with pure water that the ash fertilizer had excellent moisture absorbability. However, the effects of some trace elements in fly ash on soil health and crop productivity as well as environmental considerations need to be established with long-term studies.  相似文献   

7.
An assessment of the off-site migration of pesticides from agricultural activity into the environment in the Neuquen River Valley was performed. The aim of this study was to evaluate the distribution of pesticides in several compartments of a small agricultural sub-catchment. Soil, surface water, shallow groundwater and drift deposition were analyzed for pesticide residues. Results showed the presence of some pesticide residues in soil, surface water and shallow groundwater compartments. The highest detection frequencies in water (surface and subsurface) were found for azinphos-methyl and chlorpyrifos (>70%). In terms of concentration, the highest levels were observed in shallow groundwater for azinphos methyl (22.5 μg/L) and carbaryl (45.7 μg/L). In the soil, even before the application period had started, accumulation of residues was present. These residues increased during the period studied. Spray drift during pesticide application was found to be a significant pathway for the migration of pesticide residues in surface water, while leaching and preferential flows were the main transport routes contributing to subsurface contamination.  相似文献   

8.
An assessment of the off-site migration of pesticides from agricultural activity into the environment in the Neuquen River Valley was performed. The aim of this study was to evaluate the distribution of pesticides in several compartments of a small agricultural sub-catchment. Soil, surface water, shallow groundwater and drift deposition were analyzed for pesticide residues. Results showed the presence of some pesticide residues in soil, surface water and shallow groundwater compartments. The highest detection frequencies in water (surface and subsurface) were found for azinphos-methyl and chlorpyrifos (>70%). In terms of concentration, the highest levels were observed in shallow groundwater for azinphos methyl (22.5 μg/L) and carbaryl (45.7 μg/L). In the soil, even before the application period had started, accumulation of residues was present. These residues increased during the period studied. Spray drift during pesticide application was found to be a significant pathway for the migration of pesticide residues in surface water, while leaching and preferential flows were the main transport routes contributing to subsurface contamination.  相似文献   

9.
对三峡库区山地城市合流制污水特细砂、管道沉积物、本地土壤等进行矿物成分分析表明,污水中特细砂矿物成分以石英、方解石,长石类为主,并含有少量云母、赤铁矿和石膏等矿物;认为特细砂主要来自周边砂壤质地土壤、风化岩石和地表沉积物;山地城市合流制管网(污水常规收集方式),山涧、边沟和冲沟(污水特殊收集方式)是细砂迁移的途径;生活污水和雨水是细砂迁移的载体;中亚热带湿润季风气候,加速成土母质主要是侏罗系紫色砂质岩、泥岩和石灰岩风化,而山地、丘陵地貌特征和充沛的雨量强化合流雨污水冲刷作用,导致水土流失加剧。因此,对于山地城市合流污水特细砂的治理,需要从合流制管网建设完善、水土流失防治、生活小区统一规划和污水处理厂除砂系统优化等多个方面进行控制。  相似文献   

10.
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R 2?=?0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R 2), root mean square error and design of index (d).  相似文献   

11.
The main process controlling soil-pesticide interaction is the sorption-desorption as influenced by active soil surfaces. The sorption phenomena can influence translocation, volatility, persistence and bioactivity of a pesticide in soil. The present investigation was conducted on natural and artificial soils in order to enumerate the effect of soil components such as montmorillonite and ferrihydrite on the sorption behaviour of the fungicide metalaxyl and if sorption-desorption of the chiral pesticide affects the enantiomeric ratio. The sorption-desorption characteristics of metalaxyl were investigated by batch equilibration technique in a natural soil, two artificial soils, and in pure montmorillonite and ferrihydrite. After extraction, pesticide residues were analyzed by conventional and chiral chromatography using tandem mass spectrometry. A KdSorp (2.3–6.5) suggests low level sorption of metalaxyl with an appreciable risk of run-off and leaching. Thus, metalaxyl poses a threat to surface and ground water contamination. Furthermore, desorption tests revealed a hysteretic effect (H ≤ 0.8) in natural and artificial soils. Significant amount of metalaxyl was found tightly bound to the adsorbents without desorbing readily after desorption cycle. Desorption of 22–56% of the total amount of the retained metalaxyl was determined. This study reveals that an artificial soil derived from different soil constituents can be used to assess their influence on sorption/desorption processes. The present investigation showed that both montmorillonite and ferrihydrite play a significant role in the sorption of metalaxyl. The sorption doesn't influence the enantiomeric ratio of racemic metalaxyl.  相似文献   

12.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

13.
Environmental implications of soil remediation using the Fenton process   总被引:2,自引:0,他引:2  
This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880mgl(-1) after 64h of reaction and the DDT concentration increased from 12 to 50microgl(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied.  相似文献   

14.
Breakthrough adsorption study of migratory nickel in fine-grained soil.   总被引:1,自引:0,他引:1  
The present study was conducted to evaluate the breakthrough curve for nickel adsorption in fine-grained soil from a nearby ash pond site of a thermal power plant. Nickel was found to be the major polluting solute in the ash sluicing wastewater. The adsorption of nickel by vertical soil column batch test and horizontal migration test was carried out in the laboratory. Field investigation was conducted also, by installing test wells around the ash pond site. Experimental results showed a good adsorptive capacity of soil for nickel ions. The breakthrough curves showed a reasonable fitting with a one-dimensional mathematical model. The breakthrough curves yielded from field test results showed good agreement with a two-dimensional mathematical model.  相似文献   

15.
The present paper falls within the trend of research into interactions between various pollutants emitted anthropogenically into the environment and focuses on mercury and styrofoam debris. The study covers part of the Southern Baltic’s drainage area. Apart from styrofoam and beach sand, the research involved mosses, which are bioindicators of atmospheric metal pollution. The research has shown that mercury present in the environment becomes associated with styrofoam debris. The median for mercury concentrations in virgin styrofoam samples (0.23 ng g?1 dry weight (d.w.)) and in beach sand samples (0.69 ng g?1 d.w.) was an order of magnitude lower than in the styrofoam debris (5.20 ng g?1 d.w.). The highest mercury content observed in styrofoam debris (3,863 ng g?1 d.w.) exceeded the standards for bottom sediment and soil. The binding of mercury to styrofoam debris takes place in water, and presumably also through contact with the ground. A significant role in this process was played by biotic factors, such as the presence of biofilm and abiotic ones, such as solar radiation and the transformations of mercury forms related to it. As a result, mercury content in styrofoam debris underwent seasonal changes, peaking in summertime. Furthermore, the regional changes of mercury content in the studied debris seem to reflect the pollution levels of the environment.  相似文献   

16.
This study investigates the use of ozone for soil remediation. Batch experiments, in which ozone-containing gas was continuously recycled through a soil bed, were conducted to quantify the rate of ozone self-decomposition and the rates of ozone interaction with soil organic and inorganic matter. Column experiments were conducted to measure ozone breakthrough from a soil column. Parameters such as ozone flow rate, soil mass, and ozonation time were varied in these experiments. After ozone concentration had reached steady state, the total organic carbon concentration was measured for all soil samples. The ozonation efficiency, represented by the ratio of soil organic matter consumed to the total ozone input, was quantified for each experiment. Numerical simulations were conducted to simulate experimentally obtained column breakthrough curves. Experimentally obtained kinetic rate constants were used in these simulations, and the results were in good agreement with experimental data. In contrast to previous studies in which soil inorganic matter was completely ignored, our experiments indicate that soil inorganic matter may also promote depletion of ozone, thus reducing the overall ozonation efficiency. Three-dimensional numerical simulations were conducted to predict the efficacy of ozonation for soil remediation in the field. These simulations indicate that such ozonation can be very effective, provided that effective circulation of ozone is achieved through appropriately placed wells.  相似文献   

17.
The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO4(2-) and Cl- were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided.  相似文献   

18.
As a result of processing of metal ores, trace metals have contaminated large areas of northern France. Metal migration from the soil to groundwater presents an environmental risk that depends on the physico-chemical properties of each contaminated soil. Soil water samples were obtained over the course of 1 year with zero-tension lysimeters from an acidic, loamy, metal contaminated soil. The average trace metal concentrations in the soil water were high (e.g. for Zn 11 mg l-1 under the surface horizon), but they varied during the sampling period. Zn concentrations were not correlated with pH or total organic carbon in the solutions but were correlated with Cd concentrations. On average, 95% of the Zn and Cd but only 50% of Pb was present in a dissolved form. Analytical transmission electron microscopy was used to identify the Zn or Pb carriers. Colloids containing Pb and Zn were biocolloids, whereas colloids containing only Zn were smectites.  相似文献   

19.
表面活性剂淋滤对土壤中邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以无表面活性剂的去离子水为对照、设置1倍(1 CMC)和2倍临界胶束浓度(2 CMC)浓度,研究了单一和混合表面活性剂,包括十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX-100)对人工污染土壤中邻苯二甲酸酯(PAEs)纵向迁移的影响,土柱中上层为PAEs污染土(3 cm),下层为清洁土(20 cm)。CTAB和SDBS在2 CMC时、TX-100为1 CMC时可增强污染土中PAEs的纵向迁移,其中DMP和DEP有无表面活性剂均可发生迁移,在相同表面活性剂条件下,延长老化时间对污染土中PAEs的迁移产生一定的影响。CTAB和SDBS在2 CMC时,清洁土中PAEs总含量较低,但TX-100在1 CMC时较低。清洁土中PAEs总含量均随土层深度的增加而降低。当老化时间较短时,土壤有机质对PAEs在清洁土柱的迁移影响较小,老化时间的延长对清洁土中的PAEs迁移影响较大。3种表面活性剂均可有效促进清洁土中DMP和DEP的迁移,CTAB和SDBS在2 CMC、TX-100在1 CMC时可促进DNBP和BBP的迁移,但3种表面活性剂对清洁土中DNOP迁移的影响较小。与单一表面活性剂相比,混合表面活性剂有助于污染土中PAEs的迁移,且随着浓度的升高,清洁土中PAEs的含量呈现降低的趋势。就整个土柱而言,单一表面活性剂CTAB和SDBS在较高浓度时、TX-100较低的浓度时对PAEs的淋滤效果更好;在较短老化时间下,土壤有机质含量的高低对淋滤率没有显著影响;老化时间延长有效降低了淋滤率;而混合表面活性剂的淋滤率有明显提高,更有助于PAEs的迁移。  相似文献   

20.
Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions   总被引:1,自引:0,他引:1  
Zhong L  Yang J 《Chemosphere》2012,86(10):973-978
Detoxification of Cr(VI) through reduction by organic reductants has been regarded as an effective way for remediation of Cr(VI)-polluted soils. However, such remediation strategy would be limited in practical applications due to the low Cr(VI) reduction rate. In this study, the catalytic effect of two Fe-rich soils (Ultisol and Oxisol) on Cr(VI) reduction by malic acid was evaluated. As the results shown, the two soils could obviously accelerate the reduction of Cr(VI) by malic acid at low pH conditions, while such catalytic effect was gradually suppressed as the increase in pH. After reaction for 48 h at pH 3.2, Oxalic acid was found in the supernatant of Ultisol, suggesting the oxidization of hydroxyl in malic acid to carboxyl and breakage of the bond between C2 and C3. It was also found that the catalytic reactivity of Ultisol was more significant than that of Oxisol, which could be partly attributed to the fact that the amount of Fe(II) released from the reductive dissolution of Ultisol by malic acid was larger than that of Oxisol. With addition of Al(III), the catalytic effect from Ultisol was inhibited across the pH range examined. On the contrary, the presence of Cu(II) would increase the catalytic effect of Ultisol, which was more pronounced with the increase in pH. This study proposed a potential way for elimination of the environmental risks posed by the Cr(VI) contamination by use of the natural soil surfaces to catalyze Cr(VI) reduction by the organic reductant such as malic acid, a kind of organic reductant originating from soil organic decomposition process or plant excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号