首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 65 毫秒
1.
DO和pH值在短程硝化中的作用   总被引:19,自引:0,他引:19  
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用。本试验条件下。当DO为0.5~1.0mg/L、pH值为7.5—8.0时。在SBR反应器中很容易实现短程硝化;当DO〉0.3mg/L时,DO越低,出水NO2^-N积累率越高;当pH值〉6.8时,不会影响系统NO2^-N积累的稳定性。另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化。本试验条件下,当进水氨氮浓度为120mg/L时,控制DO为0.3—0.4mg/L可实现出水半亚硝化;当进水氨氮浓度为200mg/L时,控制DO为0.5—0.6mg/L或pH值为6.8也可以实现出水半亚硝化。  相似文献   

2.
实时控制SBR系统中的短程硝化反硝化   总被引:3,自引:1,他引:2  
以人工模拟高氨氮废水为研究对象,采用循环间歇式曝气方式,以溶解氧浓度(DO)和pH值为过程控制参数,对SBR系统进行实时控制、全程跟踪.根据此过程中COD、NH4 -N、NO2--N和NO3--N 4项水质指标的变化情况,研究SBR系统中的短程硝化反硝化工艺.实验结果表明,在短程硝化反硝化工艺中,采用较高曝气量,并且在曝气过程中用DO和pH值作为过程控制参数是可行的.  相似文献   

3.
基于DO控制实现SBR短程硝化过程   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟氨氮废水,研究了固定供氧模式下氨氮降解过程和溶解氧变化规律,并对DO控制实现短程硝化机理进行了探讨.实验结果表明,当DO<1 mg/L时,体系产生亚硝酸盐积累,当亚硝化反应结束后,DO出现跃升现象,并且pH值对短程硝化有一定影响,充足的碱度和较高的pH值有利于建立以DO为控制参数实现短程硝化过程控制.短程硝化启动后,亚硝酸盐积累率达90%以上,并且经过度曝气5 d后,系统仍保持稳定运行.  相似文献   

4.
徐婷  王丽  吴军 《环境工程学报》2016,10(6):2840-2846
为考察pH值对短程硝化过程动力学的影响,采用SBR工艺,以人工模拟氨氮废水为研究对象,进行了不同pH条件下的硝化批次实验,对氨氮降解过程进行动力学分析。在Monod方程的基础上,分析pH值对氨氧化菌(AOB)和亚硝酸氧化菌(NOB)生长速率的影响,分别建立了AOB和NOB的生长数学模型。利用MATLAB软件,将模型与硝化阶段实测数据进行拟合,取得良好的模拟效果。在此基础上通过模型预测得到泥龄(SRT)为6 d,溶解氧为1.5 mg O2/L,pH值在7.3~8范围内有利于实现短程硝化。  相似文献   

5.
控制DO及FA条件下短程硝化过程系统稳定性研究   总被引:5,自引:0,他引:5  
采用SBR工艺以水产品加工废水为研究对象,同时控制进水游离氨(FA)为0.96~1.25mg!L,溶解氧(DO)为1~2mg/L,实现了稳定的短程硝化过程。在此条件下,亚硝化率及氨氮去除率分别大于95%和88%,有机物(COD)去除率在90%以上,亚硝化速率维持在0.9666×10^-3-1.0375×10^-3mgNO2-N/(mgMLSS·h)之间。研究结果表明,同时控制DO及FA在适当范围之内可以获得稳定的短程硝化过程,并可降低系统能耗。本实验采用较低的FA浓度与较高的DO浓度(与OLAND工艺比较)得到了稳定的短程硝化过程,对水产品加工废水处理具有重要应用价值。  相似文献   

6.
短程硝化的实现、维持与过程控制的研究现状   总被引:4,自引:0,他引:4  
短程生物脱氮技术目前倍受人们的关注,国内外学者对短程硝化提出了多种实现及维持的控制途径,但仍存在着一些问题。由于活性污泥法中DO,ORP,pH的变化规律从不同角度不同程度地反映了生物脱氮反应的进程,所以用它们作为控制参数就可以对生物脱氮反应进行过程控制。在分析中,通过对国内外短程硝化控制途径的研究现状与发展趋势的分析和总结,针对目前在实现短程硝化及维持短程硝化各种途径中存在的问题,提出了通过在线检测DO,pH,ORP来实现与维持短程硝化的新思路。  相似文献   

7.
在移动床生物膜反应器(MBBR)实现稳定短程硝化的前提下,采用模拟废水进行批式实验,研究生物膜短程硝化过程的基质抑制动力学特性及pH的影响.基于Haldane模型建立短程硝化基质抑制动力学方程,确定不同pH条件下的动力学常数.结果表明,不同pH条件下,高浓度氨氮对短程硝化的抑制特性均符合Haldane模型.pH为7.0、8.0和9.0时的氨氮最大比降解速率(qmax)分别为9.906、16.234、14.742mg/(g·h),pH=8.0是获得高效的短程硝化效果的适宜运行条件.但半亚硝化的实现则需要在氨氮降解速率适当降低的条件下(pH=7.0)才能实现.  相似文献   

8.
采用SBR装置,针对高氨废水的特点,在高氨条件下,以高氨低氧为转化手段,实现高氨废水短程硝化过程中亚硝化菌的驯化与积累。控制温度为28~31℃,曝气量为15~60 L/h,pH控制在7.8~8.2的条件下连续运行78 d。实验结果表明,运行11 d后实现了短程硝化,从11 d至78 d属于系统氨氮负荷提高期。在运行过程中,氨氮污泥负荷从开始的0.023 kg/(kg·d)逐步上升为0.3 kg/(kg·d),最高时达到0.34 kg/(kg·d),此时氨氮去除率仍维持90%以上。为观察驯化后短程硝化菌的形态,取驯化好的污泥进行电镜扫描,结果表明,污泥中的细菌形态主要以球状菌为主。  相似文献   

9.
DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响   总被引:6,自引:2,他引:6  
以模拟城市污水为处理对象,研究了不同溶解氧下序批式活性污泥反应器(SBR)的短程同步硝化反硝化过程特征及处理效果。试验结果表明,溶解氧浓度是实现短程同步硝化反硝化的一个重要控制参数。在亚氮积累阶段,控制温度为28~32℃,pH值为7.5~7.8,当进水NH+4-N为30 mg/L左右,COD为250 mg/L左右时,亚硝酸盐氮的积累率达到96%~98%。在试验阶段,常温下控制溶解氧在0.5~1.0 mg/L,可保证氨氮的去除率达到95%~97%,总氮的去除率达到82%~85%。  相似文献   

10.
炼油催化剂生产过程中产生的高盐度、高无机质的高氨氮废水难以处理。研究将短程硝化反硝化生物脱氮技术应用于该种废水的处理。实验同时控制反应器温度(31℃)、溶解氧(≤1.5 mg/L)、pH值(7.8~8.7)和污泥龄(30 d),较快地实现催化剂废水短程硝化污泥的驯化,亚硝酸盐平均积累率达到了97.4%。在此基础上,结合在线监控ORP、pH值变化情况及短程硝化反应动力学研究,较好地实现了炼油催化剂废水的短程硝化。  相似文献   

11.
利用生物膜序批式反应器(SBBR),考察不同溶解氧(DO)条件下硝化过程中N2O产生及释放过程。研究结果表明:DO浓度增大有利于控制系统中N2O的产生;DO浓度分别为(1.92±0.14)mg/L、(2.34±0.11)mg/L和(2.70±0.11)mg/L时,硝化过程中N2O释放因子(N2O总产量与NH4+-N转化量的比值)分别为5.47%、5.36%和4.77%。分析其原因主要是DO浓度的减小使DO对生物膜的穿透力降低,氧传递能力减弱后生物膜系统内易发生以N2O为产物的氨氧化细菌(AOB)反硝化反应。同时,在研究的3种不同的DO条件下,低DO运行条件更有利于SBBR实现亚硝酸盐型同步硝化反硝化。  相似文献   

12.
以养猪场废水作为研究对象,采用序列间歇式活性污泥法SBR,通过实验研究了供气量、pH、排泥量、原水稀释倍数、水力停留时间(HRT)对SBR出水水质的影响。结果表明,供气量为375 L/(min·m3)、pH为8.0,并添加排泥100 mL的操作,可使SBR处理效果明显提高,COD、磷和凯氏氮去除率最高分别可达96.37%、94.14%、99.38%。逐步降低进水稀释倍数有利于培养出处理高浓度有机养猪废水的活性污泥,可将平均COD、磷和凯氏氮含量高达9 161.24、33.41和1 502.77 mg/L的养猪废水处理至出水的490.11、5.35和17.84 mg/L。降低HRT对SBR去除率影响不大。  相似文献   

13.
同步硝化反硝化工艺中DO浓度对N2O产生量的影响   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响.控制溶解氧浓度恒定在1、2、2.5和3 mg/L.结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%.DO为2 mg/L时,...  相似文献   

14.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

15.
采用电极一SBBR系统去除Cu^2+,考察了电流强度,IA竞争离子(阴离子SO4^2-、NO3^-、CL^-和阳离子Zn^2+、Ph^2+)、初始含Cu^2+量及溶液pH值对除铜效除果的影响。结果表明,当电流强度为40mA时Cu^2+去除率最高为98%。投加阴(SO4^2-、NO3^-、Cl^-)、阳(Zn^2+、Pb^2+)离子均会引起出水Cu^2+浓度的增加,且Cl^-和Ph^2+含量分别为45mg/L和30mg/L时对Cu^2+去除的影响更为显著。进水Cu^2+浓度为30mg/L时,Cu^2+去除率最高为98.48%,当进水Cu^2+≥70mg/L时,出水Cu^2+浓度不能达标。酸性(pH4.0~4.5)与碱性(pH9.0~10.0)条件均不利于Cu^2+的去除,且酸性条件的负面影响更显著.当pH为4.5~7.5时.Cu^2+去除率最高为97.78%。  相似文献   

16.
SBR降解动力学研究   总被引:1,自引:0,他引:1  
采用SBR工艺处理有机废水,在已有工艺条件下对生物降解动力学进行了研究,得出生物降解反应为一级反应。研究表明,用Monod公式能较好反映出有机物的降解规律,确定了其动力学参数Vmax=14.6306 d-1,Ks=83.2993 mg/L,得出SBR降解动力学模型为V=14.6306X·S/(83.2993+S)。利用以动力学为基础的动态模拟法优化SBR工艺,实验结果表明该方法合理可行,对SBR的设计与运行有一定的指导作用,可作为SBR反应器扩大实验和设计的依据。  相似文献   

17.
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX的进水要求;HRT为16h和12h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12h〉16h〉24h,对硝化潜力的影响为24h〉16h〉12h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24h〉16h〉12h。  相似文献   

18.
周律  彭标  邢秀娟 《环境工程学报》2016,10(4):1603-1608
在水温6℃下,进行了实验室规模的序批式移动床生物膜反应器(sequencing batch moving bed biofilm reactor,SBMBBR)及传统的序批式反应器(SBR)污水处理特性的比较研究。结果表明,在容积负荷分别为1.3、2.2和3.4 kg/(m3·d)的3个工况下,2个反应器的COD平均去除率均不低于95%,总氮平均去除率均不低于43%,总磷平均去除率均不低于64%。2个反应器中都观察到明显的同步硝化反硝化过程,且对氮的去除有较大的贡献。与SBMBBR相比,SBR系统表现出相对更高的出水有机污染物去除的稳定性,出水水质波动性低。从总体的污染物去除效果分析,在水温6℃时,在相同的工艺条件下,悬浮和附着活性污泥反应器处理低温废水的工艺没有显著的差异。  相似文献   

19.
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24 h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX 的进水要求;HRT为16 h和12 h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12 h>16 h>24 h,对硝化潜力的影响为24 h>16 h>12 h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24 h>16 h>12 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号