首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

2.
Lemurs and the Regeneration of Dry Deciduous Forest in Madagascar   总被引:2,自引:0,他引:2  
Abstract: We sought to assess the role of lemurs for seed dispersal in the dry deciduous forest of western Madagascar and the possible consequences of the demise of lemurs for forest regeneration. Forest regeneration was studied in eight plots in two large blocks of primary forest and in seven fragments of primary forest (1 plot per fragment). In 4 of the 15 study plots, the abundance of saplings was negatively and significantly correlated ( p < 0.05) with the abundance of mature individuals of the same tree species. In another 10 study plots there were negative correlations, although these were not significant on the community level. Second-order statistics were significant with p < 0.001 and indicated that seed dispersal away from the parent trees was important for successful establishment of saplings. Apart from possibly the bush pig ( Potamochoerus larvatus ), only one vertebrate species of the dry forest, the brown lemur ( Eulemur fulvus ), ingested seeds> 11 mm long and passed them through its digestive tract unharmed. These results for lemurs were based on direct observations and fecal analyses. To evaluate the role of E. fulvus , we compared regeneration in forest plots with and without E. fulvus . In forest fragments without E. fulvus , fewer lemur-dispersed tree species regenerated than would be expected based on the presence of mature tree species that are lemur-dispersed ( p < 0.05). No such effect was seen in primary forests with E. fulvus or for trees whose seeds can also be dispersed by other vertebrates. Thus, regeneration of the dry deciduous forest of western Madagascar with the complete set of primary forest tree species seems to depend upon the presence of E. fulvus .  相似文献   

3.
Abstract:  There is growing interest among conservation decision makers in promoting harvesting of forest products as an incentive for communities to retain forest cover. Assessments of the sustainability of existing harvests are essential for implementing such policies. Madagascar's endemic freshwater crayfish, Astacoides spp., are harvested throughout their range. Despite their importance to human communities, Madagascar's crayfish, like much of the island's freshwater biodiversity, are poorly known, and there is concern that the harvest may be unsustainable. We investigated sustainability of the crayfish harvest in and around Ranomafana National Park in eastern Madagascar, focusing on the heavily harvested A. granulimanus. Several villages around the park have traditional taboos against selling crayfish, resulting in widely varying levels of crayfish exploitation. We used two approaches to assess sustainability of the harvest. First we used participatory mapping combined with a geographic information system analysis to produce a spatially accurate map of harvesting intensity. We then carried out mark-and-recapture sampling at 74 sites across a range of harvest intensities to test whether the level of harvesting was a significant predictor of crayfish density and structure. Second, we used size-structured matrix population models to estimate the forest area necessary to provide the observed annual harvest from one harvesting village and compared this estimate with the area available to the harvesters. Our findings show that the crayfish harvest in Ranomafana may be sustainable under current socioeconomic conditions, suggesting that A. granulimanus is less vulnerable to overexploitation than previously thought. We emphasize the importance of a multidisciplinary approach to assessing sustainability involving both ecological information about the harvested species and socioeconomic data about the level and spatial pattern of the harvest.  相似文献   

4.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

5.
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world's biodiversity hot spots, at the Plateau of São Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design.Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species.Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes.  相似文献   

6.
The native vascular plant flora of the Republic of Singapore has suffered the extinction of 594 out of a total 2277 species. These represent local, not global, species extinctions. Coastal habitats, including mangroves, have lost 39% of their species, while inland forests have last 29%. Epiphytic species (62% loss) appear particularly prone to extinction, which is reflected in a similar disposition exhibited by the Orchidaceae. Deforestation and disturbance have been the main cause of plant species extinction in Singapore. The rich mangrove epiphyte flora has been totally exterminated, and a number of tree species are reduced to populations of a few mature individuals. Many more species continue to survive than the species-area relationship would predict given the 99.8% loss of primary forest. This is interpreted as a result of the failure of equilibrium to be achieved yet in the remnant forest fragments, even after more than a century of isolation. Singapore's secondary forests appear to accrete plant diversity very slowly, even if contiguous with primary forest areas. We conclude that remnant fragments of primary tropical forest, even of very small size, can play a major role in the conservation of tropical biodiversity. The patterns of extinction observed in Singapore indicate that coastal and estuarine sites are in greatest demand for development and therefore must be given high priority for conservation despite their somewhat lower biodiversity. Epiphyte and orchid diversity appear to be very good indicators of the degree of disturbance suffered by a habitat in the humid tropics.  相似文献   

7.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

8.
Long-term studies to understand biodiversity changes remain scarce—especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost—a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.  相似文献   

9.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

10.
Abstract: Subsistence game hunting has profound negative effects on the species diversity, standing biomass, and size structure of vertebrate assemblages in Amazonian forests that otherwise remain largely undisturbed. These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of  ) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments—estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia—clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely.  相似文献   

11.
Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.  相似文献   

12.
Abstract: Conservation biologists have developed powerful tools for reserve selection and design over the past two decades, yet seldom are protected areas actually designed on scientific grounds. Using fundamental biological and socioeconomic principles of conservation science, we designed a new protected area and its multiple-use zone on the Masoala Peninsula in the humid forest zone of Madagascar. The explicit design criteria determined the data gathered for the work, which included (1) spatial distribution and quality of habitat, (2) the areas and species at greatest risk, (3) the relationship between environmental gradients and species distributions, (4) current and predicted human settlement and land and resource use, and (5) the economic potential of natural forest management as an alternative to deforestation. We used a geographic information system to integrate these data layers and applied the design criteria to develop a park proposal that balanced human and wildlife needs. The proposal won the approval of local residents, and a national decree in 1997 designated 2100 km2 of rainforest and three satellite marine reserves as the Masoala National Park, with a surrounding multiple-use zone of approximately 1000 km2. The new park is Madagascar's largest protected area and protects more lowland (<400 m) humid forest habitat than the entire reserve system combined, a significant step forward in conserving a globally important ecoregion. Consideration of local needs and the national economy was a key element in gaining approval for the Masoala Park. Such an approach toward reserve design could be applied elsewhere to improve chances of establishing and maintaining protected areas over the long term.  相似文献   

13.
Deployment of litterfall traps revealed that clearcut logging of boreal riparian forests in northwestern Ontario, Canada resulted in a dramatic shift from once dominant conifers to regrowth composed largely of deciduous trees and reduced the allochthonous inputs of small woody debris to lake littoral zones by over 90%. Due to the rarity of macrophytes in these oligotrophic lakes, littoral macroinvertebrates were found to actively colonize woody debris placed within mesh litter bags. The recalcitrant nature of small woody debris in these lakes (average median persistence time of about 5 years estimated from mass loss data) indicates, however, that this important habitat resource will probably never completely disappear in relation to its projected rate of resupply during post-disturbance forest regeneration. Colonization rates of twigs and bark contained within the litter bags were not found to differ between coniferous and deciduous species. This indicates that macroinvertebrates in these boreal lakes are merely opportunistic colonizers of woody debris, probably for its use as either a biofilm substrate or a predation refuge. As a result, shifts in tree species composition following riparian clearcutting should not detrimentally affect the taxa richness or organism abundance of aquatic macroinvertebrates in these lakes.  相似文献   

14.
Abstract:  Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species ( Microstegium vimineum, Alliaria petiolata, Berberis thunbergii ) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species.  相似文献   

15.
One of the key problems confronting ecological forecasting is the validation of computer models. Here we report successful validation of a forest dynamics model Ecosystem Dynamics Simulator (EDS), adapted from the JABOWA-II forest succession model. This model and many variants derived from it have successfully simulated growth dynamics of uneven-aged mixed forests under changing environment with a moderate amount of input data. But rarely are adequate time-series data available for quantitative model validation. This study tested the performance of EDS in projecting the tree density, tree diameter at breast height (dbh), tree height, basal area and aboveground biomass of uneven-aged, mixed species sclerophyll forests in St. Mary state forests of eastern Australia. The test data were collected between 1951 and 2005. Every tree was uniquely numbered, tagged and measured in consecutive re-measurements. Projected growth attributes were compared with those observed in an independent validation dataset. The model produced satisfactory projections of tree density (91.7%), dbh (92.3%), total tree height (82.8%), basal area (89.3%) and aboveground biomass (87.6%) compared to the observed attributes. These results suggest that the EDS model can provide reasonable capability in projecting growth dynamics of uneven-aged, mixed species sclerophyll forests.  相似文献   

16.
Abstract:  The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from "hostile" edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve ≥60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.  相似文献   

17.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

18.
The Early Development of Forest Fragmentation Effects on Birds   总被引:4,自引:0,他引:4  
The early development of forest fragmentation effects on forest organisms is poorly understood partly because most fragmentation studies have been done in agricultural or suburban landscapes, long after the onset of fragmentation. We develop a temporal model of forest fragmentation effects on densities of forest-breeding birds and provide data from an active industrial forest landscape to test the model. The model and our empirical data indicate that densities of several forest-dwelling bird species can increase within a forest stand soon after the onset of fragmentation as a result of displaced individuals packing into remaining habitat. Along with higher densities in the newly formed fragments, pairing success in one species, the Ovenbird ( Seiurus aurocapillus ), was lower in fragments than nonfragments, possibly due to behavioral dysfunction resulting from high densities. Thus, density was inversely related to productivity. The duration and extent of increased densities following onset of fragmentation depends on many factors, including the sensitivity of a species to edge and area effects, the duration and rate of habitat loss and fragmentation, and the proximity of a forest stand to the disturbance. Incipient forest fragmentation may affect populations differently from later stages of fragmentation when the geometry of the landscape has reached a more stable configuration. Our model and data indicate, for reasons unrelated to traditional edge effects, that large tracts of forest can be important because they are relatively free from the variety of plant and animal population dynamics that might take place near new edges, including the encroachment of individuals displaced by habitat loss.  相似文献   

19.
Extraterritorial Movements of a Forest Songbird in a Fragmented Landscape   总被引:5,自引:0,他引:5  
Abstract: Forest isolation resulting from fragmentation is thought to impede the movement of forest songbirds. Because of the difficulty of tracking birds continuously, however, few data exist documenting the influence of isolation and landscape features on avian movements. During the breeding season, male Hooded Warblers (    Wilsonia citrina ) leave their small (<2.5 ha), isolated forest patches to travel between forest fragments. We documented a total of 106 forays (  n = 20 males) and found that individuals traveled up to 2.5 km away from their resident forest patch, primarily to solicit covert extra-pair copulations. Forays occurred despite the absence of forested corridors connecting fragments; even when corridors were present, males most often chose to fly directly across open fields. Resident patch size and distance to forests visited were not correlated with the frequency of forays. The maximum distance males flew over open fields did not exceed 465 m, and longer distances likely inhibit males from traveling outside their woodlots. If territorial establishment depends on the availability of extra-pair partners, then higher degrees of isolation between forests could explain why some species avoid settling in extremely fragmented landscapes. Conservation efforts should limit isolation between forest stands, thereby preserving the ability of animals to move within fragmented landscapes during the breeding season.  相似文献   

20.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号