首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV–Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1 %?w/v, glycerol concentration of 0.1 %?v/v, and inoculum density of 2.5 %?v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98 % was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV–Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.  相似文献   

3.
A new strain isolated from activated sludge and identified as Burkholderia vietnamiensis C09V was used to biodegrade crystal violet (CV) from aqueous solution. To understand the degradation pathways of CV, batch experiments showed that the degradation using B. vietnamiensis C09V significantly depended on conditions such as pH, initial dye concentration and media components, carbon and nitrogen sources. Acceleration in the biodegradation of CV was observed in presence of metal ions such as Cd and Mn. More than 98.86C of CV (30 mg l?1) was degraded within 42 h at pH 5 and 30 °C. The biodegradation kinetics of CV corresponded to the pseudo first-order rate model with a rate constant of 0.046 h?1. UV–visible and Fourier transform infrared spectroscopy (FTIR) were used to identify degradation metabolites. Which further confirmed by LC-MS analysis, indicating that CV was biodegraded to N,N-dimethylaminophenol and Michler’s ketone prior to these intermediates being further degraded. Finally, the ability of B. vietnamiensis C09V to remove CV in wastewater was demonstrated.  相似文献   

4.
The objectives of this study were to investigate the simultaneous bioelectricity generation and decolorization of methyl orange (MO) in the anode chamber of microbial fuel cells (MFCs) in a wide concentration range (from 50 to 800 mg L?1) and to reveal the microbial communities on the anode after the MFC was operated continuously for more than 6 months using MO-glucose mixtures as fuel. Interestingly, the added MO played an active role in the production of electricity. The maximum voltage outputs were 565, 658, 640, 629, 617, and 605 mV for the 1 g L?1 glucose with 0, 50, 100, 200, 300, and 500 mg L?1 of MO, respectively. The results of three groups of comparison experiments showed that accelerated decolorization of methyl orange (MO) was achieved in the MFC as compared to MFC in open circuit mode and MFC without extra carbon sources. The decolorization efficiency decreased with an increase of MO concentration in the studied concentration range for the dye load increased. A 454 high-throughput pyrosequencing revealed the microbial communities. Geobacter genus known to generate electricity was detected. Bacteroidia class, Desulfovibrio, and Trichococcus genus, which were most likely responsible for degrading methyl orange, were also detected.  相似文献   

5.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   

6.
Previous studies have not examined the adverse effects of microcystin-LR (MC-LR) at environmental relevant concentrations on the development and functions of nervous system. The neurotoxic effects of MC-LR exposure on neurotransmitter systems were investigated in Caenorhabditis elegans. After exposing L1 larvae to 0.1, 1, 10, and 100 μg?l?1 of MC-LR for 8 and 24 h, the adverse effects on GABAergic, cholinergic, serotonergic, dopaminergic, and glutamatergic neurons were examined. The expression levels of genes required for development and functions of GABAergic neurons were further investigated. Body bend frequency and head thrash frequency decreased significantly after MC-LR exposure for 8 h at concentrations more than 1 μg?l?1 and after MC-LR exposure for 24 h at concentrations more than 0.1 μg?l?1. Loss of GABAergic neurons increased significantly in a dose-dependent manner after MC-LR exposure at concentrations more than 0.1 μg?l?1. In contrast, no obvious neuronal losses or morphologic changes were observed in cholinergic, serotonergic, dopaminergic, and glutamatergic neurons in MC-LR-exposed nematodes. Quantitative real-time PCR assay further showed that expression levels of unc-30, unc-46, unc-47, and exp-1 genes required for development and function of GABAergic neurons decreased significantly in nematodes exposed to MC-LR at concentrations more than 0.1 or 1 μg?l?1. MC-LR at environmental relevant concentrations caused neurobehavioral defects, which may be largely due to the neuronal loss and the alterations of expression level of genes required for GABAergic neurotransmitter system in C. elegans.  相似文献   

7.
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m?3 day?1, for 2,4-D, and 12.8 to 59.3 g m?3 day?1 for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56?±?0.44; picloram, 94.58?±?2.62; and chemical oxygen demand (COD), 89.42?±?3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day?1, corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.  相似文献   

8.
A glasshouse study of the coastal shrub Limoniastrum monopetalum was carried out to evaluate its tolerance and capacity to accumulate copper. We investigate the effects of Cu from 0 to 60 mmol l?1 on the growth, photosynthetic apparatus, and nutrient uptake of L. monopetalum, by measuring gas exchange, chlorophyll fluorescence parameters, photosynthetic pigments, and total copper, nitrogen, phosphorus, sulfur, calcium, and magnesium content in the plant tissues. Although L. monopetalum did not survive at 60 mmol l?1 Cu, the species demonstrated a high tolerance to Cu-induced stress, since all plants survived external Cu concentrations of up to 35 mmol l?1 and displayed similar growth in the Cu-enriched medium as in the control treatment of up to the external level of 15 mmol Cu l?1 (1,000 mg Cu l?1). The reduced growth registered in plants exposed to 35 mmol Cu l?1 can be attributed to reduced photosynthetic carbon assimilation associated with the adverse effect of the metal on the photochemical apparatus and a reduction in the absorption of essential nutrients. Copper tolerance was associated with the capacity of the plant to accumulate the metal in its roots and effectively prevent its translocation to photosynthetic tissues. L. monopetalum has the characteristics of a Cu-excluder plant and could be used in the revegetation of Cu-contaminated soils.  相似文献   

9.
With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg?L?1 DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg?L?1 DR-89 and 15 mg?L?1 RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R 2?=?0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R 2?=?0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg?g?1 for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg?L?1, indicating that L. gibba biomass may be suitable in the refining step of textile effluent treatment.  相似文献   

10.
Mixed pollution is a characteristic of many industrial sites and constructed wetlands. Plants possessing an enzymatic detoxifying system that is able to handle xenobiotics seems to be a viable option for the removal of mixed persistent contaminants such organochlorines (OCs: monochlorobenzene (MCB), 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB), γ-hexachlorocyclohexane (HCH)). In this study, Phragmites australis plants were exposed to sub-lethal concentrations of OCs (7 days), in single-exposure (0.8 to 10 mg?l?1) and in mixture of OCs (0.2 mg?l?1 MCB?+?0.2 mg?l?1 DCB?+?2.5 mg?l?1 TCB?+?0.175 mg?l?1 HCH). Studies were conducted on the detoxification phase II enzymes; glutathione S-transferases (GST), and glucosyltransferases (UGT). Measurements of GST and UGT activities revealed that OCs may be buffered by glutathione and glucose conjugation. There appeared to be a correlation between the effects on phase II enzymes and the degree of chlorination of the benzene ring with, for example, the greatest effects being obtained for HCH exposure. In the case of mixed pollution, the induction of some GST isoenzymes (CDNB, 35 % non-significant) and UGT (118 %) in leaves and the inhibition of phase II enzymes in the other organs were measured. UGTs appear to be key enzymes in the detoxification of OCs.  相似文献   

11.
Twenty-five strains of filamentous fungi, encompassing 14 different species and belonging mainly to Ascomycetes, were tested for their ability to degrade benzo[a]pyrene (BaP) in mineral liquid medium. The most performing isolates for BaP degradation (200 mg?l?1) in mineral medium were Cladosporium sphaerospermum with 29 % BaP degradation, i.e., 82.8 μg BaP degraded per day (day?1), Paecilomyces lilacinus with 20.5 % BaP degradation, i.e., 58.5 μg BaP day?1, and Verticillium insectorum with 22.3 % BaP degradation, i.e., 64.3 μg BaP day?1, after only 7 days of incubation. Four variables, e.g., biomass growth on hexadecane and glucose, BaP solubilization, activities of extracellular- and mycelium-associated peroxidase, and polyethylene glycol degradation, were also studied as selective criteria presumed to be involved in BaP degradation. Among these variables, the tests based on polyethylene glycol degradation and on fungal growth on hexadecane and glucose seemed to be the both pertinent criteria for setting apart isolates competent in BaP degradation, suggesting the occurrence of different mechanisms presumed to be involved in pollutant degradation among the studied micromycetes.  相似文献   

12.
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature ?35 °C, pH 8, and initial cell concentration 7?×?107 cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.  相似文献   

13.

Purpose

Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization.

Methods

Optical microscope and UV?Cvisible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett?CBurman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed.

Results

The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl2 and MgCl2, and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability.

Conclusion

Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.  相似文献   

14.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

15.
A native Bacillus cereus isolate has been employed, for the first time, for simultaneous decolorization, dechlorination of chloroorganics, and Cr6+ remediation from the real tannery effluent. Most of the physicochemical variables in 3:1 diluted effluent were well above the standard prescribed limits, which decreased substantially upon microbial treatment. The extent of bioremediation was better in diluted (3:1) as compared to undiluted effluent supplemented with nutrients and augmented with B. cereus isolate. Maximum growth, effluent decolorization (42.5 %), dechlorination (74.1 %), and Cr6+ remediation (34.2 %) were attained with 4.0 % (v/v) inoculum, 0.8 % glucose, and 0.2 % ammonium chloride in 3:1 diluted effluent at natural pH (8.1) within 72 h of incubation. The efficiency of bioremediation in a bioreactor was higher as compared to a flask trial during 72 h of incubation: decolorization (47.9 %) was enhanced by 5.4 %, dechlorination (77.4 %) by 3.3 %, and Cr6+ removal (41.7 %) by 7.5 % at an initial color of 286 Pt-Co units and initial concentration of 62 mg chloride ions and 108 mg l?1 Cr6+. Immobilized biomass of Pseudomonas putida and B. cereus coculture enhanced the extent of Cr6+ remediation (51.9 %) by 10.2 % compared to the bioreactor trial. Chromate reductase activity and reduced Cr directly correlated and were mainly associated with soluble fraction of B. cereus plus effluent natural microflora. The GC-MS analyses revealed the formation of metabolites such as acetic acid and 2-butenoic acid in bacterially treated effluent. The supplementation of nutrients along with B. cereus augmentation is required for efficient effluent bioremediation.  相似文献   

16.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

17.
Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k 2?=?2.04?×?10?2?g?min?1?μg?1) and greater adsorption capacity (q e?=?38.8 μg?g?1) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg2+ which significantly reduced adsorption distribution coefficient (K d) from 12,990?±?260 to 4,690?±?180 L?kg?1. Species-specific adsorption distribution coefficients followed the order of $ K_{\mathrm{d}}^{{ + 00}} \gg K_{\mathrm{d}}^{{ + - 0}} > K_{\mathrm{d}}^{{ + - - }} $ . Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 °C) followed the Freundlich adsorption isotherm well.  相似文献   

18.
Bioremediation using isolated anti-cyanobacterial microorganism has been widely applied in harmful algal blooms (HABs) control. In order to improve the secretion of activated anti-cyanobacterial substances, and lower the cost, a sequential optimization of the culture medium based on statistical design was employed for enhancing the anti-cyanobacterial substances production and chlorophyll a (Chl a) removal by Streptomyces sp. HJC-D1 in the paper. Sucrose and KNO3 were selected as the most suitable carbon and nitrogen sources based on the one-at-a-time strategy method, and sucrose, KNO3 and initial pH were found as major factors that affected the anti-cyanobacterial ability of the isolated stain via the Plackett–Burman design. Based on the response surface and canonical analysis, the optimum condition of culture medium was obtained at 22.73 g l-1 of sucrose, 0.96 g l-1 of KNO3, and initial pH 8.82, and the Chl a removal efficiency by strain HJC-D1 increased from 63?±?2 % to 78?±?2 % on the optimum conditions.  相似文献   

19.
Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB. DIW-YB adsorbed dyestuffs were decolorized under SSF by using B. cereus. Enzyme analysis was carried out to ensure decolorization of Red M5B. Metabolites after dye degradation were analyzed using UV–Vis spectroscopy, FTIR, HPLC, and GC-MS. DIW-YB showed adsorption of Red M5B, dyes mixture and a textile wastewater sample up to 87, 70, and 81 %, respectively. DIW-YB adsorbed Red M5B was decolorized up to 98 % by B. cereus in 36 h. Whereas B. cereus could effectively reduce American Dye Manufacture Institute value from DIW-YB adsorbed mixture of textile dyes and textile wastewater up to 70 and 100 %, respectively. Induction of extracellular enzymes such as laccase and azoreductase suggests their involvement in dye degradation. Repeated utilization of DIW-YB showed consistent adsorption and ADMI removal from textile wastewater up to seven cycles. HPLC and FTIR analysis confirms the biodegradation of Red M5B. GC-MS analysis revealed the formation of new metabolites. B. cereus has potential to bioremediate adsorbed textile dyestuffs on DIW-YB. B. cereus along with DIW-YB showed enhanced decolorization performance in tray bioreactor which suggests its potential for large-scale treatment procedures.  相似文献   

20.
In August 2012, eight rainwater samples were collected and analyzed for pH and metal ions, viz., iron, copper, and manganese. The pH was within the range 6.84–7.65. The rate of oxidation of dissolved sulfur dioxide was determined using these rainwater samples as reaction medium. Kinetics was defined by the rate law: ?d[S(IV)]/dt = R o = k o[S(IV)]], where k o is the first-order rate constant and R o is the rate of the reaction. The effect of two volatile organic compounds—ethanol and 2-butanol—was examined and found to inhibit the oxidation as defined by the rate law: k obs = k o/(1 + B [Inh]), where k obs is the first-order rate constant in the presence of the inhibitor, [Inh] is the concentration of the inhibitor, and B is the inhibitor parameter—an empirical constant. In the pH range of collected rainwater samples, the values of first-order rate constants ranged from 3.1?×?10?5 to 1.5?×?10?4 s?1 at 25 °C. The values of inhibition parameter were found to be (5.99?±?3.91?×?104) (ethanol) and (3.95?±?2.36)?×?104 (2-butanol) at 25 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号