首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rudgers JA  Holah J  Orr SP  Clay K 《Ecology》2007,88(1):18-25
Microbial symbionts can affect plant nutrition, defensive chemistry, and biodiversity. Here we test the hypothesis that symbionts alter the speed and direction of plant succession in communities that are shifting from grasslands to forests. A widespread C3 grass introduced to the United States, Lolium arundinaceum (tall fescue), hosts a fungal endophyte that is toxic to herbivores. In replicated experimental grasslands, the presence of the endophyte in tall fescue reduced tree abundance and size, altered tree composition, and slowed plant species turnover. In addition, consumption of tree seedlings by voles (Microtus spp.) was 65% higher in plots with the endophyte at the one grassland site where these data were collected. Despite its negligible contribution to community biomass, a microbial symbiont suppressed tree establishment, posing an important constraint on the natural transition from grasslands to forests.  相似文献   

2.
对宁夏沙坡头自然保护区不同沙化和人工固沙草地地段昆虫和植物群落特征参数、环境因子进行了调查.按不同营养层类群、栖息型类群和重要目分别进行了昆虫多样性变化规律的研究,应用主分量分析法和相关分析法,分析了草原沙化和人工固沙草地生态演替中昆虫不同类群多样性间以及多样性变化与植物、环境因子的关系.结果表明,昆虫多样性随草地沙化的加重而降低,以直翅目、膜翅目和食叶类群的下降率最大;随草地的恢复昆虫多样性趋于增加,以鳞翅目、同翅目、半翅目、脉翅目及捕食类群增长率为大.寄生类群和捕食类群多样性取决于植食类群多样性;杂食类群与地栖性类群成显著性相关.影响昆虫多样性变化的主要环境因子为植物种类、层次结构、盖度和表土层厚度、坚硬度等.  相似文献   

3.
Hersh MH  Vilgalys R  Clark JS 《Ecology》2012,93(3):511-520
Host-specific mortality driven by natural enemies is a widely discussed mechanism for explaining plant diversity. In principle, populations of plant species can be regulated by distinct host-specific natural enemies that have weak or nonexistent effects on heterospecific competitors, preventing any single species from becoming dominant and thus promoting diversity. Two of the first steps in exploring the role of natural enemies in diversity regulation are to (1) identify potential enemies and (2) evaluate their levels of host specificity by determining if interactions between any one host and its enemy have equivalent survival impacts on co-occurring host species. We developed a bioinformatics framework to evaluate impacts of potential pathogens on seedling survival, for both single and multiple infections. Importantly, we consider scenarios not only if there are specialist pathogens for each plant, but also when generalist pathogens have differential effects on multiple host species, and when co-infection has species-specific effects. We then applied this analytical framework to a field experiment using molecular techniques to detect potential fungal pathogens on co-occurring tree seedling hosts. Combinatorial complexity created by 160 plant-fungus interactions was reduced to eight combinations that affect seedling survival. Potential fungal pathogens had broad host ranges, but seedling species were each regulated by different combinations of fungi or by generalist fungi that had differential effects on multiple plant species. Soil moisture can have the potential to shift the nature of the interactions in some plant-fungal combinations from neutral to detrimental. Reassessing the assumption of single-enemy-single-host interactions broadens the mechanisms through which natural enemies can influence plant diversity.  相似文献   

4.
内蒙古高原草原区湿地具有不同于典型湿地的特征,同时还兼具草原的一些特征,在保持生物多样性和珍惜物种资源方面具有不可替代的重要作用.通过样方调查,以重要值为数量特征,采用指示种分析法和多样性指数测定,对内蒙古高原典型内陆河流——锡林河中游河漫滩湿地植被群落特征及物种多样性进行了系统分析和研究.结果表明:(1)锡林河中游河漫滩湿地植被依微地形由高河漫滩向低河漫滩可分为芦苇+羊草,黄花苜蓿+无茫雀麦,灰脉苔草+早熟禾,水甜茅群落,小糠草+蒙古扁穗草等5个群落,以禾本科、菊科、豆科三大草本为主,建群种有别于典型湿地和典型草原群落.(2)植物水分生态类型以湿生、中生为主且无水生类型,具有典型湿地和草原的双重特征;(3)湿地植物群落物种多样性、均匀性和丰富度表现出相似的变化趋势,多样性和丰富度较草甸草原低但高于典型草原;(4)锡林河河漫滩湿地植物群落是典型河流湿地和典型草原之间的过渡类型.表6,参28.  相似文献   

5.
三江源区不同建植年代人工草地群落演替与土壤养分变化   总被引:6,自引:0,他引:6  
研究了了三源区不同建植期人工修复草地在不同演替阶段毒杂草[主要是甘肃马先蒿(Pedicularis kansuensis)]的入侵规律、数量特征,植物群落物种组成、生物苗和草地质最以及土壤养分、微生物活性的变化规律.结果表明,不同建植期人工修复草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异.随着演替时间的推移,人工草地群落盖度、高度、物种数、生物最和多样性指数均表现出"V"字型变化规律,杂类草--甘肃马先蒿的数量特征变化尤为明显,在4 a的人工草地群落中开始局部入侵,在5~6 a的人工草地群落中大面积入侵,其入侵速度、入侵面积达到高峰期.土壤的含水量、容重、土壤中有机质、氮素和磷素在演替过程(7 a、9 a草地)中逐渐降低,到一定时期又逐步增加;随着演替的进行,不同建植期人工草地的土壤微牛物生物量碳和酶活性均呈"V"字型,变化.对于退化生态系统的恢复首先是植被恢复,其次是土壤肥力的恢复.土壤有机质等养分的积累、微生物活性的改善不仅能使土壤-植物复合系统的功能得以恢复,同时也能促进物种多样性的形成,有利于人工草地群落稳定性的提高.在试验区尽管植被恢复演替进行得比较缓慢,但从土壤发展的角度看,仍属进展演替.所以,在退化高寒草甸的恢复过程中,若降低和有效控制外界的干扰(如围栏封育),可为退化草地恢复提供繁殖体与土壤环境,实现人工草地逐步向恢复(正向)演替进行.图3表6参34  相似文献   

6.
Johnson NC  Rowland DL  Corkidi L  Allen EB 《Ecology》2008,89(10):2868-2878
Human activities release tremendous amounts of nitrogenous compounds into the atmosphere. Wet and dry deposition distributes this airborne nitrogen (N) on otherwise pristine ecosystems. This eutrophication process significantly alters the species composition of native grasslands; generally a few nitrophilic plant species become dominant while many other species disappear. The functional equilibrium model predicts that, compared to species that decline in response to N enrichment, nitrophilic grass species should respond to N enrichment with greater biomass allocation aboveground and reduced allocation to roots and mycorrhizas. The mycorrhizal feedback hypothesis states that the composition of mycorrhizal fungal communities may influence the composition of plant communities, and it predicts that N enrichment may generate reciprocal shifts in the species composition of mycorrhizal fungi and plants. We tested these hypotheses with experiments that compared biomass allocation and mycorrhizal function of four grass ecotypes (three species), two that gained and two that lost biomass and cover in response to long-term N enrichment experiments at Cedar Creek and Konza Long-Term Ecological Research grasslands. Local grass ecotypes were grown in soil from their respective sites and inoculated with whole-soil inoculum collected from either fertilized (FERT) or unfertilized (UNFERT) plots. Our results strongly support the functional equilibrium model. In both grassland systems the nitrophilic grass species grew taller, allocated more biomass to shoots than to roots, and formed fewer mycorrhizas compared to the grass species that it replaced. Our results did not fully support the hypothesis that N-induced changes in the mycorrhizal fungal community were drivers of the plant community shifts that accompany N eutrophication. The FERT and UNFERT soil inoculum influenced the growth of the grasses differently, but this varied with site and grass ecotype in both expected and unexpected ways suggesting that ambient soil fertility or other factors may be interacting with mycorrhizal feedbacks.  相似文献   

7.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

8.
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and >20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation.  相似文献   

9.
丛枝菌根(arbuscular mycorrhizal, AM)真菌是生态系统地上地下部的重要连接体,对其群落结构特征的研究有助于菌种资源的发掘和生态系统的可持续发展.人类生产生活活动对全球环境带来了一系列的改变,如二氧化碳和臭氧浓度升高、氮沉降、增温及降水减少/增多等,全球环境变化对AM真菌群落结构的影响也引起了广泛关注.针对二氧化碳和臭氧浓度升高、增温、氮沉降和降水减少/增多等全球环境变化因子,总结其对AM真菌群落结构影响的国内外研究进展,探讨全球环境变化对AM真菌群落的可能作用途径.已有模拟全球环境变化实验研究主要集中于北半球的草原、农田和森林系统.大多研究发现二氧化碳和臭氧浓度升高未对AM真菌多样性产生不利影响,但使AM真菌群落结构显著分异.氮沉降和增温对AM真菌多样性的影响表现为降低、无显著影响和增加等多种情况,对AM真菌群落结构的影响也表现为未显著和显著分异,主要与模拟实验处理方式、增加幅度、土壤养分水平和生态系统类型等因素有关.降水减少未显著影响AM真菌群落结构和多样性,而降水增加使AM真菌群落结构发生显著分异.这些研究主要注重AM真菌群落结构和多样性如何改变等生态现象而潜在机理探索以及热带和南半球不同生态系统下的研究尚不足.另外,鉴于全球变化因子间的关联性,复合因子对AM真菌群落结构的影响值得重视.(图1表4参113)  相似文献   

10.
Abstract: We used a relatively simple and direct remote-sensing approach to determine biodiversity values in arid ecosystems and thus identify potential conservation sites. We developed indices based on regression models between grass, shrub, litter, exposed-soil groundcover components, and Landsat thematic mapper satellite imagery reflectance values over a reference site in the northern Chihuahuan Desert in New Mexico. This site supports low-disturbance desert grasslands that have been excluded from livestock grazing for 55 years and moderate-disturbance grasslands that have been under a continuous grazing regime for over 100 years. Greater richness and abundance of noninvasive and nonruderal plant species were associated with the low-disturbance grasslands that had lower shrub abundance, increased litter and grass cover, and lower exposed soil. Using the thematic mapper indices, we computed an additive grassland biodiversity index such that, as exposed soil and shrub values go down, litter and grass values go up, as does the biodiversity index. When the biodiversity index was applied to the reference-site landscape, grasslands previously identified for their high conservation value were detected. As a further test, we applied the indices to a site in Chihuahua, Mexico, that supports similar grasslands but for which there are few other data on condition and conservation values. The soil, grass, and shrub indices were moderately effective in describing the range of variation at the Mexico site, but the litter equation was not. Still, higher biodiversity value in terms of nonruderal plant diversity tended to correspond to higher grass cover and lower soil exposure and a higher overall biodiversity index. Some localized calibration with geologic substrate may be required along with an assessment of the temporal constraints, but generally the index shows promise for quickly and efficiently detecting desert grasslands of high biodiversity conservation value.  相似文献   

11.
Parker IM  Gilbert GS 《Ecology》2007,88(5):1210-1224
An important question in the study of biological invasions is the degree to which successful invasion can be explained by release from control by natural enemies. Natural enemies dominate explanations of two alternate phenomena: that most introduced plants fail to establish viable populations (biotic resistance hypothesis) and that some introduced plants become noxious invaders (natural enemies hypothesis). We used a suite of 18 phylogenetically related native and nonnative clovers (Trifolium and Medicago) and the foliar pathogens and invertebrate herbivores that attack them to answer two questions. Do native species suffer greater attack by natural enemies relative to introduced species at the same site? Are some introduced species excluded from native plant communities because they are susceptible to local natural enemies? We address these questions using three lines of evidence: (1) the frequency of attack and composition of fungal pathogens and herbivores for each clover species in four years of common garden experiments, as well as susceptibility to inoculation with a common pathogen; (2) the degree of leaf damage suffered by each species in common garden experiments; and (3) fitness effects estimated using correlative approaches and pathogen removal experiments. Introduced species showed no evidence of escape from pathogens, being equivalent to native species as a group in terms of infection levels, susceptibility, disease prevalence, disease severity (with more severe damage on introduced species in one year), the influence of disease on mortality, and the effect of fungicide treatment on mortality and biomass. In contrast, invertebrate herbivores caused more damage on native species in two years, although the influence of herbivore attack on mortality did not differ between native and introduced species. Within introduced species, the predictions of the biotic resistance hypothesis were not supported: the most invasive species showed greater infection, greater prevalence and severity of disease, greater prevalence of herbivory, and greater effects of fungicide on biomass and were indistinguishable from noninvasive introduced species in all other respects. Therefore, although herbivores preferred native over introduced species, escape from pest pressure cannot be used to explain why some introduced clovers are common invaders in coastal prairie while others are not.  相似文献   

12.
There is much concern that the functioning of ecosystems will be affected by human-induced changes in biodiversity, of which land-use change is the most important driver. However, changes in biodiversity may be only one of many pathways through which land use alters ecosystem functioning, and its importance relative to other pathways remains unclear. In particular, although biodiversity-ecosystem function research has focused primarily on grasslands, the increases in agricultural inputs (e.g., fertilization, irrigation) and grazing pressure that drive change in grasslands worldwide have been largely ignored. Here we show that long-term (27-year) manipulations of soil resource availability and sheep grazing intensity caused marked, consistent shifts in grassland plant functional composition and diversity, with cascading (i.e., causal chains of) direct, indirect, and interactive effects on multiple ecosystem functions. Resource availability exerted dominant control over above-ground net primary production (ANPP), both directly and indirectly via shifts in plant functional composition. Importantly, the effects of plant functional diversity and grazing intensity on ANPP shifted from negative to positive as agricultural inputs increased, providing strong evidence that soil resource availability modulates the impacts of plant diversity and herbivory on primary production. These changes in turn altered litter decomposition and, ultimately, soil carbon sequestration, highlighting the relevance of ANPP as a key integrator of ecosystem functioning. Our study reveals how human alterations of bottom-up (resources) and top-down (herbivory) forces together interact to control the functioning of grazing systems, the most extensive land use on Earth.  相似文献   

13.
Lau JA  Strengbom J  Stone LR  Reich PB  Tiffin P 《Ecology》2008,89(1):226-236
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations.  相似文献   

14.
de Sassi C  Lewis OT  Tylianakis JM 《Ecology》2012,93(8):1892-1901
Warmer temperatures can alter the phenology and distribution of individual species. However, differences across species may blur community-level phenological responses to climate or cause biotic homogenization by consistently favoring certain taxa. Additionally, the response of insect communities to climate will be subject to plant-mediated effects, which may or may not overshadow the direct effect of rising temperatures on insects. Finally, recent evidence for the importance of interaction effects between global change drivers suggests that phenological responses of communities to climate may be altered by other drivers. We used a natural temperature gradient (generated by elevation and topology), combined with experimental nitrogen fertilization, to investigate the effects of elevated temperature and globally increasing anthropogenic nitrogen deposition on the structure and phenology of a seminatural grassland herbivore assemblage (lepidopteran insects). We found that both drivers, alone and in combination, severely altered how the relative abundance and composition of species changed through time. Importantly, warmer temperatures were associated with biotic homogenization, such that herbivore assemblages in the warmest plots had more similar species composition than those in intermediate or cool plots. Changes in herbivore composition and abundance were largely mediated by changes in the plant community, with increased nonnative grass cover under high treatment levels being the strongest determinant of herbivore abundance. In addition to compositional changes, total herbivore biomass more than doubled under elevated nitrogen and increased more than fourfold with temperature, bearing important functional implications for herbivores as consumers and as a prey resource. The crucial role of nonnative plant dominance in mediating responses of herbivores to change, combined with the frequent nonadditive (positive and negative) effects of the two drivers, and the differential responses of species, highlight that understanding complex ecosystem responses will benefit from multifactor, multitrophic experiments at community scales or larger.  相似文献   

15.
丛枝菌根真菌对内蒙古草原大针茅群落的影响   总被引:2,自引:0,他引:2  
石伟琦 《生态环境》2010,19(2):344-349
使用真菌抑制剂在内蒙古草原开展原位试验,人为创造菌根受抑制和正常两种环境,通过分析菌根侵染率,测定大针茅群落的物种组成、丰富度和多样性等结构指标,分析丛枝菌根真菌对群落结构和净初级生产力的影响。试验结果表明,两种处理群落的菌根侵染率不同,苯菌灵有效地降低了植株的菌根侵染率。丛枝菌根真菌短期内未能对植物群落的物种丰富度、多样性产生影响,未能改变植物群落的结构和净初级生产力。但丛枝菌根真菌的存在,会对植物群落内不同植物种的地上部生物量实现再分配,降低了优势种垄断资源的能力,使群落内物种的生物量和营养元素含量趋于均匀,有利于保护关键种,有利于植被的恢复与重建。因此,研究结论为内蒙古退化草原生态系统的恢复和重建提供了重要的理论依据和参考价值。  相似文献   

16.
We discuss studies of foliar endophytic fungi (FEF) and arbuscular mycorrhizal fungi (AMF) associated with Theobroma cacao in Panama. Direct, experimentally controlled comparisons of endophyte free (E-) and endophyte containing (E+) plant tissues in T. cacao show that foliar endophytes (FEF) that commonly occur in healthy host leaves enhance host defenses against foliar damage due to the pathogen (Phytophthora palmivora). Similarly, root inoculations with commonly occurring AMF also reduce foliar damage due to the same pathogen. These results suggest that endophytic fungi can play a potentially important mutualistic role by augmenting host defensive responses against pathogens. There are two broad classes of potential mechanisms by which endophytes could contribute to host protection: (1) inducing or increasing the expression of intrinsic host defense mechanisms and (2) providing additional sources of defense, extrinsic to those of the host (e.g., endophyte-based chemical antibiosis). The degree to which either of these mechanisms predominates holds distinct consequences for the evolutionary ecology of host-endophyte-pathogen relationships. More generally, the growing recognition that plants are composed of a mosaic of plant and fungal tissues holds a series of implications for the study of plant defense, physiology, and genetics.  相似文献   

17.
Beckman NG  Muller-Landau HC 《Ecology》2011,92(11):2131-2140
The importance of vertebrates, invertebrates, and pathogens for plant communities has long been recognized, but their absolute and relative importance in early recruitment of multiple coexisting tropical plant species has not been quantified. Further, little is known about the relationship of fruit traits to seed mortality due to natural enemies in tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in fruit development and seed germination due to vertebrates, invertebrates, and fungal pathogens through experimental removal of these enemies using canopy exclosures, insecticide, and fungicide, respectively. We also measured morphological fruit traits hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates, invertebrates, and fungi differentially affected predispersal seed mortality depending on the plant species. Fruit morphology explained some variation among species; species with larger fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi on fruit development and germination and experienced reduced seed survival integrated over fruit development and germination in response to vertebrates. Within species, variation in seed size also contributed to variation in natural enemy effects on seed viability. Further, seedling growth was higher for seeds that developed in vertebrate exclosures for Anacardium excelsum and under the fungicide treatment for Castilla elastica, suggesting that predispersal effects of natural enemies may carry through to the seedling stage. This is the first experimental test of the relative effects of vertebrates, invertebrates, and pathogens on seed survival in the canopy. This study motivates further investigation to determine the generality of our results for plant communities. If there is strong variation in natural enemy attack among species related to differences in fruit morphology, then quantification of fruit traits will aid in predicting the outcomes of interactions between plants and their natural enemies. This is particularly important in tropical forests, where high species diversity makes it logistically impossible to study every plant life history stage of every species.  相似文献   

18.
Johnson BL  Haddad NM 《Ecology》2011,92(8):1551-1558
Using a model plant-pathogen system in a large-scale habitat corridor experiment, we found that corridors do not facilitate the movement of wind-dispersed plant pathogens, that connectivity of patches does not enhance levels of foliar fungal plant disease, and that edge effects are the key drivers of plant disease dynamics. Increased spread of infectious disease is often cited as a potential negative effect of habitat corridors used in conservation, but the impacts of corridors on pathogen movement have never been tested empirically. Using sweet corn (Zea mays) and southern corn leaf blight (Cochliobolus heterostrophus) as a model plant-pathogen system, we tested the impacts of connectivity and habitat fragmentation on pathogen movement and disease development at the Savannah River Site, South Carolina, USA. Over time, less edgy patches had higher proportions of diseased plants, and distance of host plants to habitat edges was the greatest determinant of disease development. Variation in average daytime temperatures provided a possible mechanism for these disease patterns. Our results show that worries over the potentially harmful effects of conservation corridors on disease dynamics are misplaced, and that, in a conservation context, many diseases can be better managed by mitigating edge effects.  相似文献   

19.
Frank DA  Pontes AW  Maine EM  Caruana J  Raina R  Raina S  Fridley JD 《Ecology》2010,91(11):3201-3209
There is little comprehensive information on the distribution of root systems among coexisting species, despite the expected importance of those distributions in determining the composition and diversity of plant communities. This gap in knowledge is particularly acute for grasslands, which possess large numbers of species with morphologically indistinguishable roots. In this study we adapted a molecular method, fluorescent fragment length polymorphism, to identify root fragments and determine species root distributions in two grasslands in Yellowstone National Park (YNP). Aboveground biomass was measured, and soil cores (2 cm in diameter) were collected to depths of 40 cm and 90 cm in an upland, dry grassland and a mesic, slope-bottom grassland, respectively, at peak foliar expansion. Cores were subdivided, and species that occurred in each 10-cm interval were identified. The results indicated that the average number of species in 10-cm intervals (31 cm3) throughout the sampled soil profile was 3.9 and 2.8 species at a dry grassland and a mesic grassland, respectively. By contrast, there was an average of 6.7 and 14.1 species per 0.5 m2, determined by the presence of shoot material, at dry and mesic sites, respectively. There was no relationship between soil depth and number of species per 10-cm interval in either grassland, despite the exponential decline of root biomass with soil depth at both sites. There also was no relationship between root frequency (i.e., the percentage of samples in which a species occurred) and soil depth for the vast majority of species at both sites. The preponderance of species were distributed throughout the soil profile at both sites. Assembly analyses indicated that species root occurrences were randomly assorted in all soil intervals at both sites, with the exception that Festuca idahoensis segregated from Artemisia tridentata and Pseudoroegnaria spicata in 10-20 cm soil at the dry grassland. Root frequency throughout the entire sampled soil profile was positively associated with shoot biomass among species. Together these results indicated the importance of large, well-proliferated root systems in establishing aboveground dominance. The findings suggest that spatial belowground segregation of species probably plays a minor role in fostering resource partitioning and species coexistence in these YNP grasslands.  相似文献   

20.
选择金沙江干流及支流小江干热河谷典型草地,采用标准样地调查法,对其上游、中游、下游以及支流干热河谷草地植物群落数量特征、物种特性、以及物种丰富度、多样性、均匀度等特征等开展研究,结果表明,①金沙江干热河谷草地植物群落密度自上游至下游显著增加(F=5.226;P≤0.01)。金沙江干流河谷内植物分布受经向的影响较大,纬向对河谷内植物群落影响较小,河谷间影响较大。草地植物群落中扭黄茅(Heteropogon contortus)种群在数量上占优势,同时扭黄茅种群密度沿着河谷走向逐渐增加,但在群落中的比例逐渐降低。②金沙江干流及支流小江东川干热河谷草地植物群落以禾本科(Gramineae)、豆科(Leguminosae)、莎草科(Cyperaceae)、菊科(Compositae)为主。③金沙江干热河谷草地植物群落丰富度分析发现,群落丰富度指数自上游至下游逐渐降低。Simpson多样性指数、Shannon-Wiener多样性指数及Peilow均匀性指数自上游至下游逐渐升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号