首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

2.
In this study, the validation of liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) isotopic dilution method for the determination of benzene and nicotine metabolites in urine was carried out. Limit of detection are 0.026 μg/L for S-phenylmercapturic acid (SPMA), 0.55 μg/L for t,t-muconic acid (t,t-MA), and 12.41 μg/L for the cotinine, and the relative combined uncertainty was also calculated. The study involves 446 healthy volunteer residents since at least 10 years in an area of central Italy. SPMA resulted to be strongly correlated with cotinine (p?=?0.75), its concentration in smokers (93) being about ten times than in non/ex-smokers (197/156), while the t,t-MA of smokers is about twice the non/ex-smokers value. A cutoff value for the definition of smoker is set at 100 μg/g creat. Oxidative stress was studied in smokers and non- and ex-smokers by means of the determination of the biomarkers 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), 8-Oxo-7,8-dihydroguanosine (8-oxoGuo), and 8-Oxo-7,8-dihydroguanine (8-oxoGua): no significant differences were found between smokers and non/ex-smokers, but when subjects are classified according to the cotinine cutoff value, a correlation in smokers’ urinary 8-oxodGuo is found with SPMA and cotinine (p?=?0.60 and p?=?0.57). Results were confirmed by chemometric analysis that also identified the experimental variables most contributing the discrimination as cotinine and t,t-MA.  相似文献   

3.
Polychlorinated biphenyls (PCBs) are a class of man-made organic compounds ubiquitously present in the biosphere. In this study, we evaluated the toxic effects of different concentrations of PCBs in two natural soils (i.e. red soil and fluvo-aquic soil) on the earthworm Eisenia fetida. The parameters investigated included anti-oxidative response, genotoxic potential, weight variation and biochemical responses of the earthworm exposed to two different types of soils spiked with PCBs after 7 or 14 days of exposure. Earthworms had significantly lower weights in both soils after PCB exposure. PCBs significantly increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activity in earthworms exposed to either soil type for 7 or 14 days and decreased the malondialdehyde (MDA) content in earthworms exposed to red soil for 14 days. Of the enzymes examined, SOD activity was the most sensitive to PCB stress. In addition, PCB exposure triggered dose-dependent coelomocyte DNA damage, even at the lowest concentration tested. This response was relatively stable between different soils. Three-way analysis of variance (ANOVA) showed that the weight variation, anti-oxidant enzyme activities, and MDA contents were significantly correlated with exposure concentration or exposure duration (P < 0.01). Furthermore, weight variation, CAT activity, and SOD activity were significantly affected by soil type (P < 0.01). Therefore, the soil type and exposure time influence the toxic effects of PCBs, and these factors should be considered when selecting responsive biomarkers.  相似文献   

4.
Plutonium associated with higher molecular weight molecules is presumed to be poorly mobile and hardly plant available. In our present study, we investigate the uptake and effects of Pu treatments on Solanum tuberosum plants in amended Hoagland medium at concentrations of [242Pu] = 100 and 500 nm, respectively. We found a direct proof of oxidative stress in the plants caused by these rather low concentrations. For the confirmation of oxidative stress, we explored the production of nitric oxide (NO) and hydrogen peroxide (H2O2) by epifluorescence microscopy. Oxidative stress markers like lipid peroxidation and superoxide radicals (O2 ??) are monitored through histochemical analysis. The biochemical parameters i.e. chlorophyll and carotenoids are measured as an indicator of cellular damage in the tested plants including the enzymatic parameters such as catalase and glutathione reductase. From our work, we conclude that Pu in low concentration has no significant effects on the uptake of many trace and macroelements. In contrast, the content of O2 ?? , malondialdehyde (MDA), and H2O2 increases with increasing Pu concentration in the solution, while the opposite effects was found for NO, catalase, and glutathione reductase. These findings prove that even low concentration of Pu regulates ROS production and generate oxidative stress in S. tuberosum L.  相似文献   

5.
Xing H  Li S  Wang Z  Gao X  Xu S  Wang X 《Chemosphere》2012,88(4):377-383
We investigated oxidative stress response and histopathological changes in the brain and kidney of the common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) content were measured using standard assays. Our results indicated that exposure to ATR, CPF or a combination of the two for 40 d induced significant changes in antioxidant enzyme (SOD, CAT and GSH-Px) activities and MDA content in the brain and kidney of the common carp. Pathological changes included tissue damage that was more severe with increased of exposure dose. To our knowledge, this is the first report to study oxidative stress and histopathological effects caused by subchronic exposure to ATR, CPF and ATR/CPF combination on common carp. The information presented in this study may be helpful to understanding the mechanisms of ATR-, CPF- and ATR/CPF combination-induced oxidative stress in fish.  相似文献   

6.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

7.
Trichlorfon is an organophosphate insecticide that is widely used in aquaculture and agriculture against parasitic infestations and has caused aquatic toxicity to non-target organisms. To evaluate the effects of low doses of trichlorfon on the oxidative stress and hepatotoxicity in amphibians, Chinese brown frogs (Rana chensinensis) were exposed to trichlorfon at concentrations of 0, 0.01, 0.1, and 1.0 mg/L for 2 and 4 weeks. Then, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and the content of malondialdehyde (MDA) in hepatic tissue were examined to evaluate the effects of oxidative stress and lipid peroxidation. The histopathological alternations to the liver were observed through light and transmission electron microscopy (TEM). The results showed that SOD and CAT activities were increased in the livers of frogs exposed to various concentrations of trichlorfon. The GST activity showed no significant changes at any concentration after 2 weeks of exposure, whereas there was an initial increase after exposure to 0.1 mg/L of trichlorfon at 4 weeks. The content of MDA revealed a significant decrease after exposure. Histopathological and ultrastructural studies showed that trichlorfon induced hyalinization, vacuolation, nucleus necrosis, and cellular swelling in hepatocytes. These results suggest that low doses of trichlorfon could induce oxidative stress, lipid peroxidation, and hepatic lesions in frogs, which shows that even lower, non-lethal doses of trichlorfon are potentially toxic to amphibians.  相似文献   

8.
The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H2O2) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.  相似文献   

9.
Although the toxicological impact of metal oxide nanoparticles has been studied for the last few decades on aquatic organisms, the exact mechanism of action is still unclear. The fate, behavior, and biological activity of nanoparticles are dependent on physicochemical factors like size, shape, surface area, and stability in the medium. This study deals with the effect of nano and bulk CeO2 particles on marine microcrustacean, Artemia salina. The primary size was found to be 15 ± 3.5 and 582 ± 50 nm for nano and bulk CeO2 (TEM), respectively. The colloidal stability and sedimentation assays showed rapid aggregation of bulk particles in seawater. Both the sizes of CeO2 particles inhibited the hatching rate of brine shrimp cyst. Nano CeO2 was found to be more toxic to A. salina (48 h LC50 38.0 mg/L) when compared to bulk CeO2 (48 h LC50 92.2 mg/L). Nano CeO2-treated A. salina showed higher oxidative stress (ROS) than those treated with the bulk form. The reduction in the antioxidant activity indicated an increase in oxidative stress in the cells. Higher acetylcholinesterase activity (AChE) was observed upon exposure to nano and bulk CeO2 particles. The uptake and accumulation of CeO2 particles were increased with respect to the concentration and particle size. Thus, the above results revealed that nano CeO2 was more lethal to A. salina as compared to bulk particles.  相似文献   

10.
The aquatic plant Pistia stratiotes L. (water lettuce) was studied due to its capability of absorption of contaminants in water and its subsequent use in wetlands constructed for wastewater treatment. The effects of Cd on root growth, accumulation of Cd, antioxidant enzymes, and malondialdehyde (MDA) content in P. stratiotes were investigated. The results indicated that P. stratiotes has considerable ability to accumulate Cd. Cadmium induced higher superoxide dismutase (SOD) and peroxidase (POD) activities than catalase activity, suggesting that SOD and POD provided a better defense mechanism against Cd-induced oxidative damage. The accumulation of Cd promoted MDA production.  相似文献   

11.
The Aryl hydrocarbon receptor (AhR)-repressor (AhRR) is a regulator of the AhR pathway, which plays an important role in xenobiotic and reactive oxygen species (ROS) metabolism. Total antioxidant capacity (TAC) is a major factor in semen quality that protects sperm against ROS stress. Malondialdehyde (MDA) is the indicator of lipid peroxidation damage that is occurred due to ROSs. In this study, we determined and compared the MDA and TAC levels of infertile men’s semen and blood plasma regarding genotype groups of AhRR-c.565C>G transversion. Semen and blood samples of 123 infertile males were collected from the Fatemeh Zahra IVF Centre, Babol, Iran. TAC and MDA levels of seminal and blood plasma were measured by TBARS and FRAP methods, respectively. Cases were genotyped by the PCR-RFLP method. The frequency of c.565C>G genotypes was determined as CC (34.14%), CG (55.28%) and GG (10.58%). Mean levels of TAC μm/L and MDA nmol/mL in semen plasma of CC, CG and GG groups were (1365.7, 1.28), (1542.8, 1.51) and (1860.2, 0.82), respectively. Also, mean levels of TAC μm/L and MDA nmol/mL in blood plasma samples in CC, CG and GG genotypes were (806.14, 1.168), (727.1, 1.006) and (635.7, 0.83), respectively. Comparison of marker levels between genotypes revealed that the TAC level of semen plasma in the GG genotype was significantly higher than its level in the CC group (p < 0.05). Our findings showed that in seminal plasma of infertile men with the GG genotype of AhRR-c.565C>G transversion, the level of total antioxidant capacity is significantly higher in comparison with the CC genotype. Then, the G allele of AhRR-c.565C>G transversion may have a role in the increase in antioxidant capacity of seminal plasma.  相似文献   

12.
Few studies have focused on the biomechanical responses of submerged, rosette-forming macrophytes to wave action, water depth, or their co-occurrence in naturally eutrophic systems. The plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics of Vallisneria natans inhabiting a range of water depths were examined along three transects (T1, T2, and T3) in a eutrophic lake, Lake Erhai, in Yunnan Province, China. These transects were exposed to weak wave action and hyper-eutrophication (T1), moderate wave action and eutrophication (T2), or strong wave action and eutrophication (T3). The results showed that V. natans was mainly distributed at intermediate depths, with the widest colonization depth in T1. The values of plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics were generally highest in T3 and smallest in T2. Along the depth gradient, these values were generally highest at 3.5, 2.5, and 2.5 m for the plants growing in T1, T2, and T3, respectively. These findings suggest that V. natans adopts a “tolerance” strategy to cope with the effects of strong wave action in eutrophic habitats and an “avoidance” strategy when exposed to moderate wave action in eutrophic areas. Since the absence of an avoidance strategy increases the resistance to low-light stress at the expense of increased drag forces, there is a limit to the wave action that V. natans can withstand. This study indicates that biomechanics could be important when determining the distribution pattern of V. natans in Lake Erhai.  相似文献   

13.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

14.
This study investigated whether respiratory syncytial virus (RSV) infection in children was associated with ambient temperature and air pollutants in Hangzhou, China. A distributed lag non-linear model (DLNM) was used to estimate the effects of daily meteorological data and air pollutants on the incidence of RSV infection among children. A total of 3650 childhood RSV infection cases were included in the study. The highest air pollutant concentrations were in January to May and October to December during the year. The yearly RSV-positive rate was 10.0 % among children with an average age of 4.3 months. The highest RSV-positive rate occurred among patients 0 to 3 months old. Children under 6.5 months old accounted for 80 % of the total patients infected by RSV. A negative correlation was found between ambient temperature and RSV infection, and it was strongest with minimum ambient temperature (r = ?0.804, P < 0.001). There was a positive correlation between the infection rate and the particulate matter (PM) 2.5 (r = 0.446, P < 0.001), PM10 (r = 0.397, P < 0.001), SO2 (r = 0.389, P < 0.001), NO2 (r = 0.365, P < 0.001) and CO (r = 0.532, P < 0.001). The current study suggested that temperature was an important factor associated with RSV infection among children in Hangzhou. Air pollutants significantly increased the risk of RSV infection with dosage, lag and cumulative effects.  相似文献   

15.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

16.
The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).  相似文献   

17.
Compound pollution refers to two or more kinds of pollutants with different properties, a pollutant from different sources, or the simultaneous existence of two or more different types of pollutants in the same environment. In this study, we aimed to investigate the individual and combined toxicity of the insecticide imidacloprid (IMI), the herbicide acetochlor (ACT), and the fungicide tebuconazole (TBZ) to zebrafish. The acute toxicity test results showed that the 96-h LC50 values of IMI, ACT, and TBZ were 276.84 (259.62–294.35) mg active ingredient (a.i.) L−1, 1.52 (1.34–1.74) mg a.i. L−1, and 8.16 (7.7–8.6) mg a.i. L−1, respectively. The combinations of IMI, ACT, and TBZ with toxicity ratios of 1:2:2, 1:4:4, 2:4:1, and 4:1:4 displayed synergistic toxic effects on zebrafish, while the toxicity ratios of 1:1:1, 1:1:2, 2:1:2, 2:2:1, and 4:2:1 of IMI, ACT, and TBZ, respectively, exhibited antagonistic toxic effects on zebrafish. The following experiments were performed with a toxicity ratio of 1:4:4 (IMI:ACT:TBZ). The activities of four enzyme biomarkers related to oxidative stress in the liver, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA) content were evaluated in each exposure group on days 7, 14, 21, and 28. Compared with those of the control group, the activities of CAT, SOD, and GST and the MDA content were significantly altered at different time points in the individual and combined exposure groups. Additionally, the activities of CAT, SOD, and GST and the MDA content were significantly altered in the combined group compared with those of the individual group after 14 days or 21 days of exposure. Therefore, it was confirmed that combined toxicity studies are indispensable in risk assessment.  相似文献   

18.
Lei Y  Korpelainen H  Li C 《Chemosphere》2007,68(4):686-694
We exposed the cuttings of Populus cathayana to Hoagland's solution containing four different manganese (Mn) concentrations (0, 0.1, 0.5 and 1mM) in a greenhouse to characterize the physiological and biochemical basis of Mn resistance in woody plants. Two contrasting populations of P. cathayana were used in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that Mn treatments significantly decreased chlorophyll content and growth characteristics, including shoot height, basal diameter, biomass accumulation and total leaf area in the two populations. Mn treatments also significantly increased the levels of abscisic acid (ABA), polyamines and free amino acids especially proline (Pro), histidine (His) and phenylalanine (Phe) available for cellular signaling and heavy metal chelation. In addition, high Mn concentrations also caused oxidative stress indicated as the accumulation of hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) contents. On the other hand, there were different responses to Mn stress between the two contrasting populations. Compared with the dry climate population, the wet climate population accumulated more Mn in plant tissues especially in leaves; it showed lower tolerance index and more pronounced decrease in growth and chlorophyll contents. The wet climate population not only accumulated less ABA, putrescine and free amino acids, but also exhibited lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), thus suffering from more serious oxidative damage. Therefore, our results showed that the wet climate population was more susceptible to Mn stress than the dry climate population.  相似文献   

19.
Increased use of fullerols in various fields and expected increase of their environmental spread impose the necessity for testing fullerol nanoparticles (FNP) effects on microbiota. There is little information available on the interaction of mycotoxigenic fungi and FNP, despite FNP having a great potential of modifying mycotoxin production. Namely, FNP exhibit both ROS-quenching and ROS-producing properties, while oxidative stress stimulates mycotoxin synthesis in the fungi. In order to shed some light on the extent of interaction between FNP and mycotoxigenic fungi, the effects of fullerol C60(OH)24 nanoparticles (10, 100, 1000 ng/mL) on mycelial growth, aflatoxin production and oxidative stress modulation in an aflatoxigenic strain of Aspergillus flavus (NRRL 3251) during 168 h of incubation in a liquid culture medium were examined. FNP slightly reduced mycelial biomass weight, but significantly decreased aflatoxin concentration in media. Lipid peroxide content, superoxide dismutase, catalase and glutathione peroxidase activities suggest that FNP treatments hormetically reduced oxidative stress within fungal cells in turn suppressing aflatoxin production. These findings contribute to the assessment of environmental risk and application potential of fullerols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号