首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT: Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.  相似文献   

2.
The US Army Land Condition-Trend Analysis (LCTA) program is a standardized method of data collection, analysis, and reporting designed to meet multiple goals and objectives. The method utilizes vascular plant inventories, permanent field plot data, and wildlife inventories. Vascular plant inventories are used for environmental documentation, training of personnel, species identification during LCTA implementation, and as a survey for state and federal endangered or threatened species. The permanent field plot data documents the vegetational, edaphic, topographic, and disturbance characteristics of the installation. Inventory plots are allocated in a stratified random fashion across the installation utilizing a geographic information system that integrates satellite imagery and soil survey information. Ground cover, canopy cover, woody plant density, slope length, slope gradient, soil information, and disturbance data are collected at each plot. Plot data are used to: (1) describe plant communities, (2) characterize wildlife and threatened and endangered species habitat, (3) document amount and kind of military and nonmilitary disturbance, (4) determine the impact of military training on vegetation and soil resources, (5) estimate soil erosion potential, (6) classify land as to the kind and amount of use it can support, (7) determine allowable use estimates for tracked vehicle training, (8) document concealment resources, (9) identify lands that require restoration and evaluate the effectiveness of restorative techniques, and (10) evaluate potential acquisition property. Wildlife inventories survey small and midsize mammals, birds, bats, amphibians, and reptiles. Data from these surveys can be used for environmental documentation, to identify state and federal endangered and threatened species, and to evaluate the impact of military activities on wildlife populations. Short- and long-term monitoring of permanent field plots is used to evaluate and adjust land management decisions.  相似文献   

3.
A major task related to conservation is to predict if planned infrastructure projects are likely to threaten biodiversity. In this study we investigated the potential impact of planned infrastructure in Spain on amphibian and reptile species, two highly vulnerable groups given their limited dispersal and current situation of population decline. We used distribution data of both groups to identify areas of high herpetofauna diversity, and compared the locations of these areas with the locations of the planned road, high-speed train railway and water reservoir network. Four criteria were used for this identification: species richness, rarity, vulnerability, and a combined index of the three criteria. From a total of 1441 cells of 20 x 20 km, areas of high diversity were defined as those cells whose ranked values for the different criteria included either all species or all threatened species. The combined index provided the smallest number of cells needed to retain all threatened species (1.7 and 2.6% of the cells for amphibian and reptile species, respectively). Coincidences between these high diversity areas and cells including planned infrastructures-denominated 'alert planning units'-were 35.4% for amphibians and 31.2% for reptiles. Mitigation of the potential impacts would include actions such as barriers to animal access to roads and railways and ecoducts under these constructions. Our approach provides conservation authorities information that can be used to make decisions on habitat protection. A technique that identifies threats to herpetofauna before they occur is also likely to improve the chance of herpetofauna being protected.  相似文献   

4.
ABSTRACT: Existing ambient water quality monitoring programs have resulted in data which are often unsuitable for assessment of water quality trends. A primary concern in designing a stream quality monitoring network is the selection of a temporal sampling strategy. It is extremely important that data for trend assessment be collected uniformly in time. Greatly superior trend detection power results for such a strategy as compared to stratified sampling strategies. In general, it is desirable that sampling frequencies be at least monthly but not greater than biweekly; higher sampling frequencies usually result in little additional information. An upper limit on trend detectability exists such that for both five and ten year base periods it is often impossible to detect trends in time series where the ratio of the trend magnitude to time series standard deviation is less than about 0.5. For the same record lengths trends in records with trend to standard deviation ratios greater than about one can usually be detected with very high power when a uniform sampling strategy is followed.  相似文献   

5.
ABSTRACT: The objective of this investigation was to determine the effect of sampling frequency and sampling type on estimates of monthly nutrient loads and flow‐weighted nutrient concentrations in a constructed wetland. Phosphorus and nitrogen loads and concentrations entering and leaving a subtropical wetland (the Everglades Nutrient Removal Project, ENRP) were calculated on the basis of three sampling frequencies. The first frequency included weekly composite samples (three daily samples composited for one week) and grab samples from August 1994 to July 1997, representing a base‐line condition for comparison with results using reduced sampling frequencies. The second and third sampling frequency included three and two composite samples per month, respectively, drawn from the weekly samples. Total phosphorus and nitrogen loads calculated using two and three samples per month were almost identical to results based on four samples per month (least‐squares regression coefficients ranged from 0.96 to 0.98). Results of monthly mean flow‐weighted nutrient concentrations, obtained using reduced sampling frequencies, also were strongly correlated to concentrations calculated using the base‐line sampling frequency (r2ranged from 0.82 to 0.93). Grab samples did not always provide good estimates of loads or concentrations, particularly at the inflow when data were highly variable. From the results of this study, we can recommend that bi‐weekly composite sampling be used to monitor nutrient concentrations and loads discharged from larger‐scale Everglades Stormwater Treatment Areas (STAs) now under construction. Because there are high costs associated with water sample collection and processing, studies to identify optimal sampling frequencies should be a key feature in the design of any comprehensive wetland‐monitoring program.  相似文献   

6.
Abstract: The determination of sediment and nutrient loads is typically based on the collection and analysis of grab samples. The frequency and regularity of traditional sampling may not provide representation of constituent loading, particularly in systems with flashy hydrology. At two sites in the Little Bear River, Utah, continuous, high‐frequency turbidity was used with surrogate relationships to generate estimates of total phosphorus and total suspended solids concentrations, which were paired with discharge to estimate annual loads. The high frequency records were randomly subsampled to represent hourly, daily, weekly, and monthly sampling frequencies and to examine the effects of timing, and resulting annual load estimates were compared to the reference loads. Higher frequency sampling resulted in load estimates that better approximated the reference loads. The degree of bias was greater at the more hydrologically responsive site in the upper watershed, which required a higher sampling frequency than the lower watershed site to achieve the same level of accuracy in estimating the reference load. The hour of day and day of week of sampling impacted load estimation, depending on site and hydrologic conditions. The effects of sampling frequency on the determination of compliance with a water quality criterion were also examined. These techniques can be helpful in determining necessary sampling frequency to meet the objectives of a water quality monitoring program.  相似文献   

7.
Non-market valuation research has produced value estimates for over forty threatened and endangered (T&E) species, including mammals, fish, birds, and crustaceans. Increasingly, Stated Preference Choice Experiments (SPCE) are utilized for valuation, as the format offers flexibility for policy analysis and may reduce certain types of response biases relative to the more traditional Contingent Valuation method. Additionally, SPCE formats can allow respondents to make trade-offs among multiple species, providing information on the distinctiveness of preferences for different T&E species. In this paper we present results of an SPCE involving three U.S. Endangered Species Act (ESA)-listed species: the Puget Sound Chinook salmon, the Hawaiian monk seal, and the smalltooth sawfish. We estimate willingness-to-pay (WTP) values for improving each species' ESA listing status and statistically compare these values between the three species using a method of convolutions approach. Our results suggest that respondents have distinct preferences for the three species, and that WTP estimates differ depending on the species and the level of improvement to their ESA status. Our results should be of interest to researchers and policy-makers, as we provide value estimates for three species that have limited, if any, estimates available in the economics literature, as well as new information about the way respondents make trade-offs among three taxonomically different species.  相似文献   

8.
Increasingly, the public and governmental agencies are concerned about remediating and reclaiming contaminated sites. Understanding the ecological resources on-site and valuing those resources in terms of future uses is important for determining suitable future land uses. In this article, we suggest the major categories of natural resource information required by managers, policy makers, and the general public for making initial future land-use determinations. We then use a dataset of 25 Department of Energy (DOE) sites slated for remediation to explore whether such data are readily available and whether the data can be used to assess natural resource value. Although information is available for almost all sites on federally endangered and threatened species, this information is less available for state-listed species. Biodiversity information is available only for some sites for birds (N = 17), mammals (N = 15), reptiles (N = 14), amphibians (N = 13), and plants (N = 11) and is almost nonexistent for invertebrates (N = 2). Some information is available for invasive species (N = 9). The number of available habitats is directly related to total acres and nonindustrial acres. Biodiversity of birds, mammals, and reptiles (but not amphibians) is directly related to both total acres and total nonindustrial acres of sites. These data suggest that even over a wide geographical area (from eastern to western United States), biodiversity relates to habitat size and number of habitats available. This information will be useful not only to DOE managers but also to natural resource trustees, ecologists, state and federal regulators, and the general public in the discourse over future uses of these lands.*Published online Author to whom correspondence should be addressed; Joanna Burger  相似文献   

9.
Innate distributions or variability of nutrient concentrations within the fluvial system must be better understood to establish nutrient guidelines that are applicable and to discern which areas or landscape positions within the watershed are more vulnerable to nutrient losses. This work was conducted to (1) determine the system-wide spatial distribution of N and P concentrations in biweekly stream samples from two Southern Piedmont watersheds, and (2) determine the relationship between N and P concentrations in biweekly samples and watershed morphological features. From December 1998 through December 2000 samples were collected biweekly from 17 sampling sites located on Rose Creek and from 18 sampling sites located on Greenbrier Creek. The samples were analyzed for ammonium (NH4), nitrate (NO3), and dissolved reactive phosphorus (DRP) concentrations. We found that spatial autocorrelation of nitrate concentrations was evident and that some spatial autocorrelation of DRP concentrations was also present. We further found that the fluvial network morphological feature, drainage density, explained part of the spatial autocorrelation found for nitrate but did not for DRP. These results indicate that innate variability of nutrient concentrations within streams exists and suggest that decision makers should begin to consider location within the watershed when making nutrient management guidelines and decisions.  相似文献   

10.
ABSTRACT: Growing interest in water quality has resulted in the development of monitoring networks and intensive sampling for various constituents. Common purposes are regulatory, source and sink understanding, and trend observations. Water quality monitoring involves monitoring system design; sampling site instrumentation; and sampling, analysis, quality control, and assurance. Sampling is a process to gather information with the least cost and least error. Various water quality sampling schemes have been applied for different sampling objectives and time frames. In this study, a flow proportional composite sampling scheme is applied to variable flow remote canals where the flow rate is not known a priori. In this scheme, historical weekly flow data are analyzed to develop high flow and low flow sampling trigger volumes for auto‐samplers. The median flow is used to estimate low flow sampling trigger volume and the five percent exceedence probability flow is used for high flow sampling trigger volume. A computer simulation of high resolution sampling is used to demonstrate the comparative bias in load estimation and operational cost among four sampling schemes. Weekly flow proportional composite auto‐sampling resulted in the least bias in load estimation with competitive operational cost compared to daily grab, weekly grab sampling and time proportional auto‐sampling.  相似文献   

11.
Here we present the methodology used for terrestrial biodiversity analysis and site selection in Phase B of the UNDP/GEF COAST project. The analysis was focused on the problem of biodiversity evaluation in four Croatian counties stretching from sea level to the highest mountain in Croatia. Data on habitats, vascular flora, and fauna (mammals, birds, reptiles, amphibians, butterflies, ground beetles, and underground invertebrates) were collected and analyzed for each of the four counties. Emphasis was given to the richness of endangered species and the rarity of endemic species. Based on the spatial analyses of habitat, fauna, and flora data, four to six areas were selected from each county and ranked according to their biodiversity importance. Overlap between areas important for richness and those important for rarity was highest for data on flora (65.5%) and lowest for data on fauna (16.7%). When different data sets were compared, the lowest overlap was between flora and fauna (17.1%) and largest between fauna and habitats (23.9%). Simultaneous overlap among all three data sets was found in just 6.5% of the overall selected areas. These results suggest that less specific data, with respect to taxa threat status, could better serve as surrogate data in estimating overall biodiversity. In summary, this analysis has demonstrated that Dalmatia is a region with a high overall biodiversity that is important in a broader European context.  相似文献   

12.
Assessing state-wide biodiversity in the Florida Gap analysis project   总被引:1,自引:0,他引:1  
The Florida Gap (Fl-Gap) project provides an assessment of the degree to which native animal species and natural communities are or are not represented in existing conservation lands. Those species and communities not adequately represented in areas being managed for native species constitute 'gaps' in the existing network of conservation lands. The United States Geological Survey Gap Analysis Program is a national effort and so, eventually, all 50 states will have completed it. The objective of Fl-Gap was to provide broad geographic information on the status of terrestrial vertebrates, butterflies, skippers and ants and their respective habitats to address the loss of biological diversity. To model the distributions and potential habitat of all terrestrial species of mammals, breeding birds, reptiles, amphibians, butterflies, skippers and ants in Florida, natural land cover was mapped to the level of dominant or co-dominant plant species. Land cover was classified from Landsat Thematic Mapper (TM) satellite imagery and auxiliary data such as the national wetlands inventory (NWI), soils maps, aerial imagery, existing land use/land cover maps, and on-the-ground surveys. Wildlife distribution models were produced by identifying suitable habitat for each species within that species' range. Mammalian models also assessed a minimum critical area required for sustainability of the species' population. Wildlife species richness was summarized against land stewardship ranked by an area's mandates for conservation protection.  相似文献   

13.
In this case study of a degraded tropical landscape, we examine how the protected area system in Hong Kong, China, should be modified to improve its efficiency in protecting the surprisingly rich biota. The challenge lies in the fine scale of site selection, and the absence of a core area with high species richness and rarity. Site selection was first conducted in 1 km grid units by selecting hotspots and irreplaceable sites using field records for eight groups of species (amphibians, reptiles, mammals, breeding birds, ants, butterflies, dragonflies and rare vascular plants). The habitats of conservation value within the selected grid units were then delineated on the basis of expert knowledge. Recommendations for increasing the total existing protected area by 6% (i.e. an additional 2% of Hong Kong's total land area) were submitted to the Government in August 2000. To test the robustness of the results, site selection was repeated in 2001 using updated data and different selection methods. The numbers of squares selected by complementarity-based algorithms were similar to those by the hotspots and irreplaceable site method. Sites selected for rare species were very sensitive to data completeness, implying that the application of complementarity-based algorithms at fine scales might be limited.  相似文献   

14.
In agricultural landscapes, studies that identify factors driving species richness and occupancy are important because they can guide farmers to use conservation practices that minimize species loss. In this context, anurans are threatened by habitat loss because they depend on the characteristics of both local water bodies and adjacent landscapes. We used a model selection approach to evaluate the influence of local and landscape variables in determining anuran species richness and occurrence in 40 freshwater bodies in a heavily deforested region of semideciduous Atlantic Forest in southeastern Brazil. Our aim was to develop recommendations for conservation of anuran communities in rural areas. Pond hydroperiod and area were the most important variables for explaining anuran species richness and occupancy, with greatest species richness being found in water bodies with intermediate hydroperiod and area. Other important variables that reflected individual species occupancies were the number of vegetation types and pond isolation. In addition, recent studies evidenced that water bodies near forest fragments have higher anuran abundance or diversity. In conclusion, we suggest the maintenance of semi-permanent ponds, isolated from large rivers or reservoirs and near forest fragments, as an effective strategy to conserve anuran fauna in agricultural landscapes of southeastern Brazil. Brazilian government requires the maintenance of forests as legal reserve in each farm, and farmers need to maintain ponds as drinking water for cattle or crop irrigation. For this reason, the guidelines suggested in the present study can be easily adopted, without additional costs to rural productivity.  相似文献   

15.
In the present communication habitat ecology, species diversity; distribution and different indices of fish biodiversity management were studied in a Central India river (River Betwa, a tributary of River Ganga basin approved under India’s first river linking plan). Correlation between fish species richness with the hydrological attributes showed good relationship and water depth, dissolved oxygen and pH were found the most important variables in shaping fish assemblage. Altogether, sixty-three fish species belonging to 20 families and 45 genera were collected from five sampling stations spread along the upstream, mid stream and lower streams. Cyprinids were the most dominated group represented by 26 species belonging to 15 genera, followed by Bagridae (6 species from 3 genera), and Schilbeidae (4 species from 4 genera). The distribution of fish showed interesting pattern and about 10% species were common to all the sites showing long migration range. Shannon-Weiner diversity index showed considerable variation and ranged from 1.89 to 3.51. Out of 63 species status of 10 species were not known due to data deficit, 29 categorized as lower risk, 14 as vulnerable, 8 as endangered, while the remaining two species were introduced. Our study shows that the River supports considerable diversity of the fishes and is important for conservation and about 34% fish fauna is threatened being either vulnerable or endangered. We assessed that the river supports considerable percentage of food fish (89.47), ornamental fish (49.12%) and sport fish (5.26%). Among the eight major types of fish habitats identified along the entire stretch of river, open river, shallow water and deep pools were habitats contributing maximum diversity. Fish species richness (FSR) were significantly different (P < 0.05) in all the habitats except channel confluence and scour pool. Trophic niche model may be useful for assessing altered as well as less altered fish habitat of the tropical rivers. Since this river will be interlinked in near future, this study would be useful for conservation planning and management and also for future assessment after interlinking. Issues related to various threats to aquatic environment and conservation management strategies have been discussed.  相似文献   

16.
Mine-drainage treatment wetland as habitat for herptofaunal wildlife   总被引:1,自引:0,他引:1  
Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs (Rana clamitans) and pickerel frogs (R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers (Hyla crucifer). Whole-body assays of green frog and bullfrog (R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.  相似文献   

17.
ABSTRACT: Dairy cow pastures and feeding areas around barns can be a significant source of nonpoint source pollutants to nearby streams. To help document the significance of these sources, nutrient export in streamfiow from a 56.7-ha, mostly agricultural, watershed located in southwestern North Carolina was monitored from August 1994 to January 1996. Total nitrogen and phosphorus export rates from the upper, predominantly pasture, part of the watershed were 18.0 and 1.4 kg/ha/yr, respectively, as measured by weekly grab sampling and 18.7 and 4.9 kg/halyr, respectively, as measured from storm event monitoring. Nitrogen and phosphorus export rates for the area between the monitoring sites, which included overgrazed cow holding and feeding areas and farm buildings, were 376 and 86 kgfhalyr, respectively, for grab sampling and 351 and 160 kg/ha/yr, respectively, for storm event monitoring. To estimate the amount of reduction from nonpoint source controls necessary to effect a significant reduction in pollutant loading, statistical analyses of the load data were conducted. The analyses for the five pollutants monitored showed that total suspended solids would require the greatest reduction (34.6 percent for weekly grab and 33.6 percent for storm) in loading after the implementation of controls for statistical significance. Nitrate plus nitrite was found to require the least reduction (12.6 percent for weekly grab). Pollutant export rates computed from weekly grab samples and storm event samples used separately were compared to corresponding export rates computed from combining grab and storm event samples to assess the differences in monitoring schemes.  相似文献   

18.
ABSTRACT: Precipitation, throughfall, and stream pH were measured weekly over a 27-week period in 1982 on the Little Millseat watershed in eastern Kentucky. The average pH values over the study period were 4.3, 4.9, and 6.4, respectively, indicating significant buffering as water moved from the atmosphere, through the deciduous canopy, and through or over the soil to the stream. Regression analysis demonstrated that the timing and amount of precipitation were important factors influencing the pH of the throughfall. Weekly precipitation and the three-week average precipitation were statistically significant variables, explaining 53 percent of the variance in the observed through- fall pH. Precipitation pH was not a statistically significant variable for this watershed and sampling period.  相似文献   

19.
Abstract: In 2003, we compared two benthic macroinvertebrate sampling methods that are used for rapid biological assessment of wadeable streams. A single habitat method using kick sampling in riffles and runs was compared to a multiple habitat method that sampled all available habitats in proportion of occurrence. Both methods were performed side‐by‐side at 41 sites in lower gradient streams of the Piedmont and Northern Piedmont ecoregions of the United States, where riffle habitat is less abundant. Differences in sampling methods were examined using similarity indices, two multimetric indices [the family‐level Virginia Stream Condition Index (VSCI) and the species‐level Macroinvertebrate Biotic Integrity Index (MBII)], their component metrics, and bioassessment endpoints based on each index. Index scores were highly correlated between single and multiple habitat field methods, and sampling method comparability, based on comparison of similarities between and within sampling methods, was particularly high for species level data. The VSCI scores and values of most of its component metrics were not significantly higher for one particular method, but relationships between single and multiple habitat values were highly variable for percent Ephemeroptera, percent chironomids, and percent Plecoptera and Trichoptera (Hydropsychidae excluded). A similar level of variability in the relationship was observed for the MBII and most of its metrics, but Ephemeroptera richness, percent individuals in the dominant five taxa, and Hilsenhoff Biotic Index scores all exhibited differences in values between single and multiple habitat field methods. When applied to multiple habitat samples, the MBII exhibited greater precision, higher index scores, and higher assessment categories than when applied to single habitat samples at the same sites. In streams with limited or no riffle habitats, the multiple habitat method should provide an adequate sample for biological assessment, and at sites with abundant riffle habitat, little difference would be expected between the single and multiple habitat field methods. Thus, in geographic areas with a wide variety of stream types, the multiple habitat method may be more desirable. Even so, the variability in the relationship between single and multiple habitat methods indicates that the data are not interchangeable, and we suggest that any change in sampling method should be accompanied by a recalibration of any existing assessment tool (e.g., multimetric index) with data collected using the new method, regardless of taxonomic level.  相似文献   

20.
Military training activities are known to impact individual species, yet our understanding of how such activities influence animal communities is limited. In this study, we used long-term data in a case study approach to examine the extent to which the local small landbird community differed between a site in northeast Kansas that experienced intensive disturbance from military training activities (Ft. Riley Military Installation) and a similar, nearby site that experienced minimal human disturbance (Konza Prairie Biological Station). In addition, we characterized how the regional pool of potential colonizers influenced local community dynamics using Breeding Bird Survey data. From 1991 to 2001, most species of small terrestrial landbirds (73%) recorded during breeding surveys were found at both sites and the mean annual richness at Ft. Riley (39.0 ± 2.86 [SD]) was very similar to that of Konza Prairie (39.4 ± 2.01). Richness was maintained at relatively constant levels despite compositional changes because colonizations compensated local extinctions at both sites. These dynamics were driven primarily by woodland species that exhibited stochastic losses and gains and were present at a low local and regional abundance. Our results suggest that military training activities may mimic natural disturbances for some species in this area because the small landbird community did not differ markedly between sites with and sites without extensive human disturbance. Although our results suggest that military training is not associated with large changes in the avian community, additional studies are needed to determine if this pattern is found in other ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号