首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

2.
After intravenous injection of 3-hydroxybenzo (a) pyrene into rat, benzo (a) pyrene-diols were detected in urine, and in vitro experiment using isolated hepatocytes and sliced kidney also indicated the metabolism of 3-hydroxybenzo (a) pyrene to diol derivatives. THese results suggested the presence of unknown metabolic pathway of benzo (a) pyrene-phenols such as 3-hydroxybenzo (a) pyrene to diol derivatives both in vivo and in vitro.  相似文献   

3.
Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-beta-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0x10(-6)-1.0x10(-3)mM for benzo[a]pyrene and 6.0x10(-6)-1.2x10(-3)mM for pyrene in 10mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9x10(-6) and 5.4x10(-6)mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-beta-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil.  相似文献   

4.
Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02   总被引:1,自引:0,他引:1  
Batch experiments were conducted to characterize the degradation of benzo[a]pyrene, a representative high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH), by Sphingomonas yanoikuyae JAR02. Concentrations up to the solubility limit (1.2 microg l(-1)) of benzo[a]pyrene were completely removed from solution within 20 h when the bacterium was grown on salicylate. Additional experiments with [(14)C]7-benzo[a]pyrene demonstrated 3.8% mineralization over 7 days when salicylate was present is solution, and one major radio-labeled metabolite was observed that accounted for approximately 10% of the initial radio-label. Further characterization of the radio-labeled metabolite using HPLC/MS and HPLC/MS/MS identified radio-labeled pyrene-8-hydroxy-7-carboxylic acid and unlabeled pyrene-7-hydroxy-8-carboxylic acid as novel ring-cleavage metabolites, and a benzo[a]pyrene degradation pathway was proposed. Results indicate that biostimulation of HMW PAH degradation by salicylate, a water-soluble, non-toxic substrate, has significant potential for in situ bioremediation.  相似文献   

5.
Eurasian perch (Perca fluviatilis) was exposed trophically to phenanthrene, pyrene and benzo[a]pyrene. Accumulation kinetics in the muscle tissue of parent PAHs and hydroxylated metabolites were established for 56 days at 3 levels of exposure (0, 100 and 500 μg/kg BW). Benzo[a]pyrene and 3-hydroxy-benzo[a]pyrene were not detected in the muscles. During exposure, there was an increase in phenanthrene, pyrene and their hydroxylated metabolites in the muscle tissue. Low transfer to muscle tissue was observed at equilibrium for phenanthrene (4.4 ± 0.6% and 2.7 ± 0.8%) and pyrene (1.0 ± 0.2% and 0.33 ± 0.09%), depending on the concentrations in the spiked feed.  相似文献   

6.
In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ(BaP)), the saturation dose in the dose-response curve was about 10ng TEQ(BaP) g(-1) soil (dw).  相似文献   

7.
Zang S  Li P  Li W  Zhang D  Hamilton A 《Chemosphere》2007,67(7):1368-1374
A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed. Hydrogen peroxide-zinc (H(2)O(2)-Zn), the fungus - Aspergillus niger and the bacteria - Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus-bacteria combined with H(2)O(2)-Zn, the concentration range of BaP in the cultures was 30-120mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.  相似文献   

8.
Kim YS  Min J  Hong HN  Park JH  Park KS  Gu MB 《Chemosphere》2007,66(7):1243-1248
Escherichia coli is known to respond to certain toxic chemicals through an increased expression of various stress genes. In this study, therefore, the expression of recA, katG, fabA and grpE genes was used as a representative for DNA, oxidative, membrane and protein damage, respectively, after E. coli was exposed to different polycyclic aromatic hydrocarbons (PAHs), i.e., phenanthrene, naphthalene and benzo[a]pyrene. To accomplish this, the expression levels of these four genes were quantified using a real-time RT-PCR analysis when E. coli cultures were under stressful conditions, such as those caused by an exposure to mitomycin C, hydrogen peroxide and phenol. It was found that the primary toxic effect of each chemical is clearly seen when the expression levels of the different genes are compared. Tests with the PAHs showed naphthalene and benzo[a]pyrene to be genotoxic, while phenanthrene had no clear effect on the expression of any of these genes. Based on these results, the effects due to these toxic chemicals and the extent of each stress can be evaluated with ease using the expression levels of different stress responsive genes.  相似文献   

9.
Trichlorofluoromethane, in concentrations of 80, 400, 2 000, 10 000 and 50 000 ppm, was administered to rats of both sexes (Sprague Dawley) by inhalation exposure. 2 000 ppm in air (= 11 200 mg/m3) amount to twice the MAK value of 1 000 ppm. At exposure times of 4 hours this corresponds to the MAK value defined for an 8 hour workday. Unscheduled DNA synthesis (UDS) was measured in single-cell suspensions of hepatocytes, pulmonary epithelial cells and lymphocytes of the spleen, respectively. In the pulmonary cells concentrations of 2 000, 10 000 and 50 000 ppm of freon 11 lead to a significantly increased mean silver grain count compared to a negative control group. In spleen and liver cells increasing concentrations of R 11 tend to increase the incorporation of thymidine into the DNA of the cells. These changes of the extent of unscheduled DNA synthesis can, however, not be statistically verified.  相似文献   

10.
Chelating sorbents with diethylenetriaminepenta(methylene-phosphonic acid) (DTPMPA) and ethylenediaminetetraacetic acid ligands immobilized on zirconia matrix were prepared and subsequently saturated with Cu(II). All the Cu chelates catalyzed decomposition of H(2)O(2) yielding highly reactive hydroxyl radicals. All of them were also able to catalyze degradation of polycyclic aromatic hydrocarbons (anthracene, benzo[a]pyrene and benzo[b]fluoranthene). The most effective DTPMPA-based catalysts G-32 and G-35 (10 mg ml(-1) with 100 mmol H(2)O(2)) caused almost complete decomposition of 15 ppm anthracene and benzo[a]pyrene during a five day catalytic cycle at 30 degrees C. Anthracene-1,4-dione was the main product of anthracene oxidation by all catalysts. The catalysts were active in several cycles without regeneration.  相似文献   

11.
先利用C-18固相萃取小柱富集大港油田港东联合处理站污水处理站的采油废水中16种多环芳烃(PAHs,即萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘、二苯并[a,h]蒽和苯并[g,h,i]苝),再用气相色谱/质谱(GC/MS)分析测定其浓度,以评价PAHs的去除率和生态风险。结果表明:(1)采油废水经处理后,COD、石油类去除率分别达到82.27%、91.06%;外排水COD、石油类达到《污水综合排放标准》(GB 8978—1996)一级标准要求,优于中国采油废水处理的一般水平。(2)采油废水主要以2、3环的PAHs为主,约占总量的93%以上。(3)苯并[a]芘超过《地表水环境质量标准》(GB 3838—2002)中限值。(4)处理前的采油废水中蒽、菲和苯并[a]芘具有一定的生态风险;处理后的外排水中萘、蒽、菲、荧蒽、苯并[a]芘的暴露浓度(PEC)/预测无效应浓度(PNEC)均小于1,目前尚未对环境造成威胁。但是8种PAHs(苊烯和苯并类PAHs除外)总和表现出较大的毒性,需要引起重视。  相似文献   

12.
The removal of pyrene and benzo(a)pyrene from contaminated water by sequential and simultaneous ozonation-bioremediation techniques was investigated. During the sequential treatment, ozonation using 0.5 or 2.5 mg/L ozone was used as a pretreatment process, whereas, during the simultaneous treatment process, ozonation of hydrocarbon-contaminated water at a predetermined duration using 0.5 mg/L ozone was made in the presence of microbial biomass. Ozonation was not beneficial for the removal of pyrene. However, despite a decreased specific biodegradation rate, ozonation improved the overall elimination of benzo(a)pyrene during both treatment processes. The overall removal of benzo(a)pyrene increased from 23 to 91% after exposure of the water to 0.5 mg/L ozone for 30 minutes during the simultaneous treatment process and further to 100% following exposure to 2.5 mg/L ozone for 60 minutes during the sequential treatment mode, demonstrating the benefits of combined ozonation-biological treatment for the removal of polycyclic aromatic hydrocarbons.  相似文献   

13.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

14.
Aina R  Palin L  Citterio S 《Chemosphere》2006,65(4):666-673
Polycyclic aromatic hydrocarbons (PAHs) are among the most dangerous environmental contaminants due to their toxic, carcinogenic and mutagenic effects. Although there are many data in literature that detail the effects of PAHs on animals, little is known about their action on higher plants which are often used as bioindicators. The aim of the present study was to evaluate the genotoxicity of two different PAHs, benzo[a]pyrene (BaP) and naphthalene (Naph), on Trifolium repens L. Clover plants were exposed to soil which had been artificially contaminated with three concentrations of BaP (5, 10 and 20 microg g-1) or Naph (25, 50 and 100 microg g-1). After 15 days, changes in the DNA content and sequence of roots and shoots were evaluated by flow cytometry (FCM) and amplified fragment length polymorphism (AFLP). Root and shoot dry weight were also determined to assess plant growth. Results showed that BaP and Naph were both genotoxic for white clover, inducing significant changes in root and shoot DNA sequence. Damage was more severe in the root than in the shoot suggesting that the translocation of these compounds and their genotoxic metabolites was limited. Ploidy alterations were not detected and the extent of damage caused by all the tested PAH concentrations was not sufficient to affect plant development.  相似文献   

15.
The metabolism of biphenyl, naphthalene, anthracene, phenanthrene, pyrene and benzo[a]pyrene by Cyclothyrium sp. CBS 109850, a coelomycete isolated for the first time in Brazil from industrially polluted estuarine sediment, was studied. The metabolites were extracted and separated by high performance liquid chromatography (HPLC) and characterized by UV spectral analyses and mass, and proton nuclear magnetic resonance ((1)H NMR) spectrometry. Cyclothyrium sp. transformed biphenyl to 4-hydroxybiphenyl and anthracene to anthracene trans-1,2-dihydrodiol. This isolate metabolized 90% of [9-(14)C]phenanthrene, producing phenanthrene trans-9,10-dihydrodiol as a major metabolite, phenanthrene trans-3,4-dihydrodiol, 1-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, and a novel metabolite, 2-hydroxy-7-methoxyphenanthrene. Circular dichroism spectra analyses indicated that the major enantiomers of phenanthrene trans-9, 10-dihydrodiol, phenanthrene trans-3,4-dihydrodiol and pyrene trans-4,5-dihydrodiol, a pyrene metabolite produced previously by Cyclothyrium sp. CBS 109850, were predominantly in the (R,R) configuration, revealing a high stereoselectivity for initial monooxygenation and enzymatic hydration of phenanthrene and pyrene by Cyclothyrium sp. CBS109850. The results also show a high regioselectivity since the K-regions of phenanthrene and pyrene were the major sites of metabolism.  相似文献   

16.
Annual study on the benzo(a)pyrene (BaP) concentration in aerosols in the coastal zone of the Gulf of Gdansk (southern Baltic) has been performed at Gdynia station. Combustion processes, especially domestic heating of both local and regional origin, were identified as the main sources of benzo(a)pyrene in this area. Concentrations observed during the heating season (mean 2.18 ng?m?3) were significantly higher than these recorded in the non-heating season (mean 0.05 ng?m?3). High benzo(a)pyrene concentrations were associated with low temperature and high humidity. Whereas high levels of precipitation usually decreased the BaP concentration in aerosols. The concentration of this factor in the studied area depended also on the wind direction and air masses trajectories. During heating season, continental air masses (coming from S, SE, SW) seemed to increase benzo(a)pyrene concentration, while maritime air masses (from N, NE, NW) caused its decrease. The differences in the BaP concentration resulting from potentially different emission levels of this compound during working and non-working days were not clearly pronounced.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

18.
一株多环芳烃降解菌的筛选及其降解特性   总被引:1,自引:0,他引:1  
微生物修复是治理土壤多环芳烃(polycyclic aromatic hydrocarbons, PAHs)污染的主要方法,而高效降解菌筛选是微生物修复技术的重要基础。从北京焦化厂土壤中筛选分离得到一株PAHs降解菌Q3,通过生理生化和16S rDNA等分析手段鉴定其为Rhodococcus rhodochrous。结果表明:该菌株对芘的耐受能力较强,可降解初始浓度为200 mg·L−1的芘;该菌株具有降解广谱性,可利用苯并[a]芘、苯并[b]荧蒽、二苯并[a,h]蒽、苯并[g,h,i]苝等9种PAHs为唯一碳源进行代谢,特别是对苯并[a]芘等高环PAHs具有较好的降解效果;此外,该菌株可有效降解模拟液中的混合PAHs,并且对野外被PAHs长期污染的土壤具有较好的强化修复效果。投加菌株处理后的处理组与对照组相比,土壤PAHs总去除率提高了24%。以上结果表明该菌株对环境中被PAHs污染的土壤具有较好的强化修复潜力,可为PAHs污染土壤的微生物修复技术提供技术参考。  相似文献   

19.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

20.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号