首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [U(NA)] usually < 50 mg kg(-1)) into thin (<25 cm) Fe oxide-rich clayey seams that retain U (U(NA) 239 to 375 mg kg(-1)). However, greatest contaminant transport occurs in a 2 to 3 m thick more permeable stratigraphic transition zone located between two less permeable, and generally less contaminated zones consisting of (i) overlying unconsolidated saprolite (U(NA) < 0.01 to 200 mg kg(-1)) and (ii) underlying less-weathered bedrock (U(NA) generally < 0.01 to 7 mg kg(-1)). In this transition zone, acidic (pH < 4) U-enriched ground water (U of 38 mg L(-1)) has weathered away calcite veins resulting in greater porosity, higher hydraulic conductivity, and higher U contamination (U(NA) 106 to 745 mg kg(-1)) of the weathered interbedded shale and sandstone. These characteristics of the transition zone produce an interval with a high flux of contaminants that could be targeted for remediation.  相似文献   

2.
Consumption of microbially contaminated ground water can cause adverse health effects and the processes involved in pathogen transport in aquifers need to be understood. The influences of distance, flow velocity, and colloid size on colloid transport were examined in homogenous pea-gravel media using an 8-m column and three sizes (1, 5, and 10 microm) of microspheres. Experiments were conducted at three flow rates by simultaneously injecting microspheres with a conservative tracer, bromide. Observed concentrations were simulated with CXTFIT and analyzed with filtration theory. The results demonstrate that colloid concentration is strongly log-linearly related to transport distance (as suggested by filtration theory) in coarse gravels, similar to our previous field studies. In contrast, the log-linear relationship is often reported to be invalid in fine porous media. The observed log-linear relationship is possibly because straining is negligible in the coarse gravels investigated. This has implications in predicting setback distances for land disposal of effluent, and suggests that setback distances in gravel aquifers can be estimated using constant spatial removal rates (f). There was an inverse relationship between transport distance and colloidal concentration, but not with temporal attachment rate (katt) and collision coefficient (alpha). Increases in flow velocity result in increasing colloidal recovery, katt and alpha but decreasing f. Increases in sphere size result in decreasing colloidal recovery with increasing katt, f, alpha, and velocity enhancement. Diffusion is the dominant collision mechanism for 1-microm spheres (81-88%), while settling dominates for 5- and 10-microm spheres (> 87%), and interception is very small for all spheres investigated.  相似文献   

3.
Phosphorus (P) loss in overland flow varies with spatial distribution of soil P, management, and hydrological pathways. The effect of flow time, flowpath length, and manure position on P loss in overland flow from two central Pennsylvania soils packed in boxes of varying length (0.5, 1.0, 1.5, 2.75, and 4.0 m long x 15 cm wide x 5 cm deep) were examined by collecting flow samples at 5-min intervals for 30 min (50 mm h(-1) rainfall) without and with 75 kg P ha(-1) applied as swine (Sus scrofa) manure over 0.5 m of the box slope length at distances of 0 to 3.5 m from the downslope collection point. Dissolved reactive P concentration was more closely related to the proportion of clay in sediment of overland flow before (r = 0.98) than after (r = 0.56) manure application. This was attributed to the transport of larger, low-density particles after applying manure. The concentration of dissolved and particulate P fractions decreased with increasing flowpath length, due to dilution rather than sorption of P by surface soil during overland flow. Total P loss (mainly as particulate P) from the Watson channery silt loam (fine-loamy, mixed, active, mesic Typic Fragiudult) was more than from Berks channery silt loam (loamy-skeletal, mixed, active, mesic Typic Dystrudept), even with manure applied. Thus, while P loss in overland flow is affected by where manure is applied relative to flowpath length, initial soil P concentration should not be discounted when looking at areas of potential P loss within a watershed.  相似文献   

4.
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.  相似文献   

5.
There is interest in quantifying phosphorus (P) loss from intensively grazed dairy landscapes to identify key pathways and target remediation methods. The Bog Burn drains a dairying catchment in Southland, New Zealand, and has been monitored at fortnightly intervals over a 12-mo period at four sites for suspended sediment (SS), dissolved reactive phosphorus (DRP), and total phosphorus (TP). Time-integrated samplers, deployed at 0.6 median water depth at each site (calculated from previous year's flow data), collected sediment samples, which were analyzed for SS, bioavailable phosphorus (BAP), and TP. Mean concentrations of DRP and TP in stream flow and BAP and TP in sediment were generally highest in summer or autumn (0.043 mg DRP L(-1), 0.160 mg TP L(-1), 173 mg BAP kg(-1), 2228 mg TP kg(-1)) and lowest in winter or spring (0.012 mg DRP L(-1), 0.034 mg TP L(-1), 6 mg BAP kg(-1), 711 mg TP kg(-1)), while loads were highest in winter. Analysis of (137)Cs concentrations in trapped sediment, topsoil, subsoil, and stream bed and bank sediment indicated that trapped sediment was derived from topsoil and entered the stream either through tile drainage or, to a lesser extent, overland flow. Because concentrations of DRP and TP in stream flow are in excess of recommended limits for good water quality (>0.01 mg DRP L(-1), 0.033 mg TP L(-1)), management should focus on the topsoil and specifically on decreasing P loss via tile drainage. This is best achieved by decreasing soil Olsen P concentrations, especially because, on average, Olsen P concentrations in the catchment were above the agronomic optimum.  相似文献   

6.
Nuclear magnetic resonance imaging (NMRI) methods for visualization of fluid flow and transport in porous media are reviewed in this paper. They are illustrated with experiments showing applications of velocity imaging, NMRI measurements of multiphase flow, and NMRI measurements of density flow. The latter two are compared with numerical simulations. The examples show the capacity of NMRI to give structural information both of the medium and the fluid distributions as well as their temporal development. The resulting data can be used in a black box-white box comparison and as benchmarks for numerical models.  相似文献   

7.
ABSTRACT

In this study, a proton exchange membrane (PEM) fuel cell stack composed of five cells in series is numerically investigated to study the impact of the nonuniform reactant flow rate on the performance of the stack. A comparison of the water concentration, temperature, reaction heat source, and current density of change rule of two groups of fuel cell stacks with uniform and nonuniform reactant flow rate reveals the performance degradation mechanism caused by nonuniform reactant flow. The results indicate that while operating under low-voltage conditions, the nonuniform reactant flow rate will cause the accumulation of excess liquid water near the PEM that is near the cathode exhaust outlet, and the local area reacts strongly on the catalyst, whereas the local area reacts slowly. When the average voltage of the stack is 0.55 V, the current density under the nonuniform reactant flow rate condition is 12.9% lower than that of the uniform reactant flow rate condition. In the case of uniform and nonuniform reactant flow rate at low current densities, the performance difference is not evident, but it is expected to be pronounced with the increase in current density. The simulation results are compared with the experimental data reported in the literature through a polarization curve, and they turn out to be well correlated with the experimental results.  相似文献   

8.
In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).  相似文献   

9.
There has been widespread interest in using compost to improve the hydrologic functions of degraded soils at construction sites for reducing runoff and increasing infiltration. The objective of this study was to determine the effects of compost amendment rate on saturated hydraulic conductivity (Ks) and water retention in order to identify target compost rates for enhancing soil hydrologic functions. Samples were prepared with three soil textures (sandy loam, silt loam, and sandy clay loam), amended with compost at 0%, 10%, 20%, 30%, 40%, and 50%. All soils were tested at a porosity of 0.5 m3/m3, and the sandy loam was further tested at high (0.55 m3/m3) and low (0.4 m3/m3) porosities. The Ks and water retention data were then used to model infiltration with HYDRUS-1D. With increasing compost amendment rate, Ks and water retention of the mixtures generally increased at the medium porosity level, with more compost needed in heavier soils. As porosity decreased in the sandy loam soil, the amount of compost needed to improve Ks rose from 20% to 50%. Water distribution in pore fractions (gravitational, plant-available, and unavailable water) depended on texture, with only the highest compost rates increasing plant-available water in one soil. Results suggest soil texture should be taken into consideration when choosing a compost rate in order to achieve soil improvement goals. Hydrologic benefits may be limited even at a high rate of compost amendment if soil is compacted.  相似文献   

10.
Antibiotics reach soils via spreading of manure or sewage sludge. Knowledge on the transport behavior of antibiotics in soils is needed to assess their environmental fate. The effect of flow rate and applied mass, i.e., input concentration and pulse duration, on the transport of 14C-sulfadiazine (SDZ; 4-aminoN-pyrimidin-2-yl-benzenesulfonamide) was investigated with soil column experiments and numerical studies. Sulfadiazine was applied in pulses (6.8, 68 or 306 h) under steady-state (0.051 and 0.21 cm h(-1)) and intermittent flow conditions and at two input concentrations (0.57 and 5.7 mg L(-1)). Breakthrough curves (BTCs) of 14C were measured and for one experiment concentrations of SDZ, and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) and N(1)-2-(4-hydroxypyrimidinyl)benzenesulfanilamide (4-OH-SDZ) were determined. After finalizing the leaching experiments, 14C was quantified in different slices of the columns. A lower flow rate led to remarkably lower eluted masses compared with the higher flow rates. All BTCs could be described well using a three-site attachment-detachment model for which a common set of parameters was determined. However, the BTC obtained with the high input concentration was slightly better described with a two-site isotherm-based model. The prediction of the concentration profiles was good with both model concepts. The fitted sorption capacities decreased in the order SDZ > 4-OH-SDZ > An-SDZ. Overall, the experiments reveal the presence of similar mechanisms characterizing SDZ transport. The dependence of model performance on concentration implies that although the three-site attachment-detachment model is appropriate to predict the transport of SDZ in soil columns, not all relevant processes are adequately captured.  相似文献   

11.
Calcium sulfite hemihydrate (CaSO(3).0.5H2O), a common byproduct of coal-fired utilities, is fairly insoluble and can decompose to release toxic SO2 under highly acidic soil conditions; however, it can also oxidize to form gypsum. The objective of this study was to examine the effects of application rate and soil pH on the oxidation of calcium sulfite under laboratory conditions. Oxidation rates measured by release of SO4-S to solution decreased with increasing application rate. Leachate SO4-S from soils amended with 1.0 to 3.0 g kg-1 CaSO3 increased over a 21 to 28 d period before reaching a plateau. At 4 g kg-1, maximum SO4-S release was delayed until Week 7. Oxidation and release of SO4-S from soil amended with 3.0 g kg-1 calcium sulfite increased markedly with decreasing soil pH. After only 3 d incubation, the concentrations of SO4-S in aqueous leachates were 77, 122, 170, 220, and 229 mg L-1 for initial soil pH values of 7.8, 6.5, 5.5, 5.1, and 4.0, respectively. At an initial soil pH value of 4.0, oxidation/dissolution did not increase much after 3 d. At higher pH values, oxidation was maximized after 21 d. These results suggest that autumn surface applications of calcium sulfite in no-till systems should permit ample time for oxidation/dissolution reactions to occur without introducing biocidal effects related to oxygen scavenging. Soil and annual crops can thus benefit from additions of soluble Ca and SO4 if calcium sulfite is applied in advance of spring planting.  相似文献   

12.
以涪陵页岩气田产出水为研究对象,研究絮凝、酸析、Fenton氧化和NaClO氧化相互协同作用下,采出水COD去除率的变化程度及规律。比较了不同组合方式下水样COD去除效果及变化规律,考察了絮凝剂、次氯酸钠和Fenton试剂的加量以及体系pH值对去除率的影响,结果表明:(1)单一絮凝或酸析条件下,最高COD去除率<25%,在絮凝剂加量80mg/L、酸析pH为4时,絮凝-酸析协同处理COD去除率达到>40%;(2)原始水样直接进行次氯酸钠氧化,COD最高去除率为75.01%,絮凝-酸析后进行次氯酸钠氧化,最高COD去除率为80.34%,与原始水样相比提高了5.33%,且达到相同的COD去除效果,絮凝-酸析后水样对次氯酸钠的需求量低于原始水样;(3)絮凝-酸析后水样进行Fenton氧化与原始水样直接进行Fenton氧化相比,COD去除率提高了6.07%;(4)絮凝-酸析-NaClO- Fenton协同处理,水样COD去除率达到>90%,其中最高去除为94.17%,与絮凝-酸析-NaClO和絮凝-酸析-Fenton处理相比分别提高了13.83%和5.27%。水样首先经过絮凝-酸析预处理,达到削减后续次氯酸钠和Fenton氧化负荷、降低药剂用量目的,然后经过Fenton试剂和次氯酸钠对不同类型特征污染物选择性去除的协同作用,可达到较高的COD去除率。  相似文献   

13.
Up until the present, Jordan has relied almost exclusively on imported petroleum for its primary energy requirements. Encouraged by emerging technologies and recent fossil fuel discoveries, Jordanians are seriously examining exploitation of their own indigenous energy resources to meet projected mid- and long-term power requirements. The most prominent of the known resources is oil shale. This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20 MW and 50 MW demonstration units and a 400 MW commercial-scale plant. The report focuses on three areas: (i) the engineering feasibility of using Jordan's oil shale in a circulating fluidized bed combustion (CFBC) boiler; (ii) environmental aspects of the proposed oil shale-for-power plants(s); and (iii) the economic feasibility of the proposed plant(s). The results could be useful for other low- to middle-income countries considering oil shale as an option for power production.  相似文献   

14.
In this laboratory study different combinations of bed (sand, pebble gravel [gravel], and a mix of sand and gravel) and flow (typical and overtopping) were experimented with to investigate the impact of porous deflectors in flow diversity, water quality, and fish performance in prismatic open channels. Deflectors changed the gradually varied flow to a rapidly varied flow, as a sudden change in the water depth was observed at the deflectors, and this change was large for smooth beds. With the presence of gravel, the scouring near the downstream deflector was almost twice that of the sand bed, and with the scouring at its own upstream deflector, irrespective of whether the flow was typical or overtopping. This behavior was a result of sand mobilization due to shear stress and sand mobilization aided gravel transport. The mixed bed showed less gravel movement compared to the gravel-only bed. The percentage of sediment washed out was minor for all bed scenarios, indicating that sediment transport was local. Relative to the sand bed without deflectors (representing a typical urban canal), deflectors resulted in reduced and improved water quality (in terms of sediment load) for sand, and mixed bed, respectively. The fishes found refuge and were comfortable in the pool areas created by deflectors unlike in channels without deflectors where they showed exhaustion.  相似文献   

15.
陈莉娥 《四川环境》2007,26(3):25-27
该文在对合成洗涤剂废水进行混凝反应实验基础上,针对影响因素影响力大小的不同问题,使用主分量分析方法。对输入输出权矩阵进行处理和分析,对各影响因素影响力大小顺序进行了研究。分析结果表明,跟传统经验吻合较好,更重要的是对影响因子赋权方面提供了有力的理论依据,对混凝反应的理论分析于实验设计提供了新的思路。  相似文献   

16.
Sulfonamide antibiotics are a commonly used group of compounds in animal husbandry. They are excreted with manure, which is collected in a storage lagoon in certain types of confined animal feeding operations. Flood irrigation of forage fields with this liquid manure creates the potential risk of groundwater contamination in areas with shallow groundwater levels. We tested the hypothesis that-in addition to the soil characteristics-manure as cosolute and manure pH are two major parameters influencing sulfonamide transport in soils. Solute displacement experiments in repacked, saturated soil columns were performed with soil (loamy sand) and manure from a dairy farm in California. Breakthrough of nonreactive tracer and sulfadimethoxine, sulfamethazine, and sulfamethoxazole at different solution pH (5, 6.5, 8.5) with and without manure was modeled using Hydrus-1D to infer transport and reaction parameters. Tracer and sulfonamide breakthrough curves were well explained by a model concept based on physical nonequilibrium transport, equilibrium sorption, and first-order dissipation kinetics. Sorption of the antibiotics was low ( K? ≤ 0.7 L kg) and only weakly influenced by pH and manure. However, sulfonamide attenuation was significantly affected by both pH and manure. The mass recovery of sulfonamides decreased with decreasing pH, e.g., for sulfamethoxazole from 77 (pH 8.5) to 56% (pH 5). The sulfonamides were highly mobile under the studied conditions, but manure application increased their attenuation substantially. The observed attenuation was most likely caused by a combination of microbial transformation and irreversible sorption to the soil matrix.  相似文献   

17.
With the encouragement of shale gas production in the United States, governments have considered a range of legislative and regulatory proposals to manage health and environmental damages that may accompany extraction activities. Exceptions adopted by Congress to major federal environmental legislation have meant that individual US states have deemed it necessary to provide oversight through regulations to protect people and safeguard environmental quality. In responding, states have legal structures under which drilling firms may not need to disclose the toxic substances used in fracturing wells. Yet, with increasing numbers of drilling sites, more people are at risk from accidents and exposure to harmful substances used at fractured wells. To provide for meaningful health and safety protection, governments may need to reevaluate legal provisions offering trade secret protection for toxic substances used in fracturing.  相似文献   

18.
The transport-induced air quality problems of the Greater Manchester region are examined. The problems are defined in terms of economic and social factors leading to the development of a car-based economy. The impacts of transport emissions on the natural and built environment and human health are discussed. The administrative, legislative and pollution control responses to the problem are examined. The nature of future air quality problems will require an integration of traffic management, land use, public transport and pollution control policies if they are to be satisfactorily addressed. A series of policy recommendations towards this end are included.  相似文献   

19.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

20.
针对淄博市大武水源地的石油污染状况进行了动态模拟石油类污染物迁移特性的研究。内容包括用现场粘土充填灰岩石板缝测定弥散系数、吸附系数及其他有关参数,建立该系统在饱水条件下的迁移数学模型。研究表明静态吸附均遵循Langmuir吸附模式,且吸附能力较小;静态吸附结果与动态参数比较吻合,可直接用于建立整体模型;水中的石油类污染物在地表以下迁移性很强,容易下渗进入潜水层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号