共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of manure to frozen and/or snow-covered soils of high-latitude, continental climate regions is associated with enhanced P losses to surface water bodies, but the practice is an essential part of most animal farming systems in these regions. Field experiments of the fates of winter-applied manure P are so difficult as to make them essentially impractical, so a mechanistic, modeling approach is required. Central to a mechanistic understanding of manure P snow-melt runoff is knowledge of snowpack disappearance (ablation) as affected by manure application. The objective of this study was to learn how solid manure applied to snow-covered fields modulates the surface energy balance and thereby snow cover ablation. Manure landspreading experiments were conducted in Arlington, WI during the winters of 1998 and 1999. Solid dairy manure was applied on top of snow at a rate of 70 Mg ha(-1) in 1998, and at 45 and 100 Mg ha(-1) in 1999. Results showed that the manure retarded melt, in proportion to the rate applied. The low-albedo manure increased absorption of shortwave radiation compared with snow, but this extra energy was lost in longwave radiation and turbulent flux of sensible and latent heat. These losses result in significant attenuation of melt peaks, retarding snowmelt. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure. 相似文献
2.
Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced. 相似文献
3.
Angel CR Powers WJ Applegate TJ Tamim NM Christman MC 《Journal of environmental quality》2005,34(2):563-571
The effect of dietary non-phytin phosphorus (NPP) and phytase (PHY) concentration on total phosphorus (TP) and water-soluble phosphorus (WSP) excretion was determined. Diets tested in broiler experiments were: National Research Council nutrient requirements for non-phytin phosphorus (NRC), NRC + PHY, reduced non-phytin phosphorus (RED), and RED + PHY. Turkey and swine experiment diets included NRC, RED, and RED + PHY. For all experiments, except broiler Experiment 1, excreta were: (i) boiled, antibiotic added, then frozen; (ii) boiled, antibiotic added, incubated (37 degrees C for 72 h), then frozen; and (iii) incubated, boiled, antibiotic added, then frozen. In Experiment 1, excreta were collected and frozen or incubated for 24 or 48 h. In broiler Experiment 1, WSP was not affected by phytase but increased with post-excretion incubation. In a broiler Experiment 2, reducing NPP resulted in reduced excreta TP and WSP (11.3 to 8.3 and 5.3 to 2.7 g kg(-1)). Feeding RED + PHY diets resulted in less TP and WSP (7.6 and 0.6 g kg(-1)) as compared with NRC + PHY (11.2 and 3.9 g kg(-1), Experiment 3). Incubation resulted in increased WSP, irrespective of phytase addition such that WSP as a percent of TP was similar among treatments. Addition of antibiotics before incubation prevented the increase in WSP. Similar results were observed with turkey and swine. Therefore, when phytase is used properly (i.e., with a simultaneous reduction of NPP), WSP or WSP as a percent of TP are not affected. The increase in WSP as a percent of TP post-excretion is a function of excreta microbial activity and not dietary phytase addition. 相似文献
4.
Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations. 相似文献
5.
There is growing interest in evaluating the effects of corn silage harvesting methods on erosion control. Increasing the silage cutting height will increase residue cover and could conceivably minimize off-site migration of sediments compared with conventional silage harvesting. The effects of residue level and manure application timing on runoff and sediment losses from no-till corn were examined. Treatments included conventional corn grain (G) and silage (SL) and nonconventional, high-cut (60-65 cm) silage (SH). Corn harvesting treatments were subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm/h; 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots collected, and a subsample analyzed for sediment concentration and aggregate size distribution. Runoff volume was inversely related to residue cover. Manure addition to silage plots reduced spring runoff by 71 to 88%, attributable to an increase in soil organic matter content, compared with SH-N and SL-N. Differences in sediment concentration between SH and SL were not significant. For silage plots, spring-applied manure had the greatest influence on sediment export reducing it by 84 to 93% in spring runoff compared with corresponding N plots. Sediment loads were also 85 to 97% lower from SH-S compared with SL-N in all four seasons. Except for spring 2003, sediment export was lower from G compared with SL. The combination of manure and higher residue associated with high-cut silage often lowered sediment export compared with low-cut silage. Nearly identical aggregate size distributions were observed in sediments from SH and SL plots. High residue levels combined with spring-applied manure led to enrichment in the clay-sized fraction of runoff sediment. Recently applied manure and higher residue levels achieved by high-cutting silage can substantially lower sediment losses in spring runoff when soil is most susceptible to erosion. 相似文献
6.
Environmental benefits and economic costs of manure incorporation on dairy waste application fields 总被引:3,自引:0,他引:3
Osei E Gassman PW Hauck LM Jones R Beran L Dyke PT Goss DW Flowers JD McFarland AM Saleh A 《Journal of environmental management》2003,68(1):1-11
Model simulations performed representing dairies in a 93000 ha watershed in north central Texas suggest that manure incorporation results in reduced phosphorus (P) losses at relatively small to moderate cost to producers. Simulated manure incorporation with a tandem disk on fields double-cropped with sorghum/winter wheat resulted in up to 33, 45, and 37% reductions in per hectare sediment-bound, soluble, and total P losses in edge-of-field runoff, relative to simulated surface manure applications. The effects of incorporation were evaluated at three different manure application rates. On aggregate across all three manure application rates, significant declines in P losses were obtained with incorporation except for sediment-bound P losses under the N-based manure application rate scenario.We found that the practice of incorporating manure shortly after it has been broadcast on the soil surface could help reduce P losses in such situations where P-based rates alone prove inadequate. The cost the producer incurs when manure is incorporated is on average about 1% of net returns when manure is applied at the N rate and 2-3% when it is applied at alternative P-based rates. In practice the costs could be lower because producers may substitute the manure incorporation operation for a tandem disk operation performed prior to manure application. As more and more dairy producers switch to the use of sorghum and corn silage in dairy rations and consequent on-farm production of these forages, the practice of manure incorporation may help to reduce phosphorus losses resulting from dairy manure applications to fields with these forage crops. 相似文献
7.
Vermicomposting is the process whereby organic residues are broken down by earthworms and microorganisms. Addition of manure has been shown to be of critical importance and determines most of the changes that take place during vermicomposting. Here, we study how the rate of manure applied affects microbial biomass and activity and carbon losses. For this, we designed continuous feeding reactors in which new layers of manure were added sequentially to form an age gradient inside the reactors. We compared two application rates of pig slurry (1.5 and 3kg) and set up six reactors for each one; half of the 12 reactors initially contained a population of 500 earthworms (Eisenia fetida). We found that earthworms increased microbial biomass and were more active in reactors fed with 3kg of slurry. However, the differential rates of respiration were not reflected in C losses. The results thus showed that loss of C was not affected by the rate of pig slurry applied. We conclude that despite the strong effect that the rate of manure has on microbe-earthworm relationships, it did not affect carbon losses. We therefore recommend the use of low application rates of manure when the objective is the microbial stabilization of the residue. 相似文献
8.
Ammonia volatilization from surface-banded and broadcast application of liquid dairy manure on grass forage 总被引:1,自引:0,他引:1
Manure can provide valuable nutrients, especially N, for grass forage, but high NH, volatilization losses from standard surface-broadcast application limits N availability and raises environmental concerns. Eight field trials were conducted to evaluate the emission of NH, from liquid dairy manure, either surface broadcast or applied in narrow surface bands with a trailing-foot implement. Manure was applied using both techniques at rates of approximately 25 and 50 m3 ha(-1) on either orchardgrass (Dactylis glomerata L.) on a well-drained silt loam or reed canarygrass (Phalaris arundinacea L.) on a somewhat poorly drained clay soil. Ammonia emission was measured with a dynamic chamber/equilibrium concentration technique. High NH3 emission rates in broadcast treatments, especially at the high rate (2 to 13 kg ha(-1) h(-1)), occurred during the first few hours after spreading, followed by a rapid reduction to low levels (<0.5 kg ha(-1) h(-1) in most cases) by 24 h after spreading and in subsequent days. Band treatments often followed the same pattern but with initial rates substantially lower and with a less dramatic decrease over time. Total estimated NH3 losses from broadcast application, as a percent of total ammoniacal N (TAN) applied, averaged 39% (range of 20 to 59%) from the high manure rate and 25% (range of 9 to 52%) from the low rate. Band spreading reduced total NH3 losses by an average of 52 and 29% for the high and low manure rates, respectively. Results show that the trailing-foot band application method can reduce NH3 losses and conserve N for perennial forage production. 相似文献
9.
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment. 相似文献
10.
Gupta S Munyankusi E Moncrief J Zvomuya F Hanewall M 《Journal of environmental quality》2004,33(4):1238-1246
Land application of manure is a common practice in the Upper Midwest of the United States. Recently, there have been concerns regarding the effect of this practice on water quality, especially when manure is applied during winter over frozen soils. A study undertaken on a Rozetta silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs) at Lancaster, WI, evaluated the effects of tillage and timing of manure application on surface and subsurface water quality. The daily scrape and haul liquid dairy manure was applied either in the fall (before snow) or in winter (over snow with frozen soil underneath) to be compared with no manure under two tillage systems (no-till and chisel-plowing). In this paper, we report results on the effects of the above treatments on mineral N leaching. Percolation and mineral N leaching during the nongrowing season were, respectively, 72 and 78% of the annual losses, mainly because of the absence of plant water and N uptake. Percolation was generally higher from no-till compared with chisel-plow but there was no significant effect of tillage on mineral N concentration of the leachate or mineral N losses via leaching. Mineral N leaching was statistically higher from the manure-applied vs. no-manure treatment, but there was no difference between winter-applied manure and no-manure treatments. There were significant tillage by manure interactions with fall manure application followed by chisel-plowing resulting in highest N leaching losses. Averaged over the two years, N leaching rates were 52, 38, and 28 kg N ha(-1) yr(-1) from fall-applied, winter-applied, and no-manure treatments, respectively. These results show that there is substantial N leaching from these soils even when no fertilizer or manure is applied. Furthermore, fall-applied manure followed by fall tillage significantly increases N leaching due to enhanced mineralization of both soil and manure organic N. 相似文献
11.
Two kinds of disparities pervade China and threaten its well-being. The first, regional disparities focus on levels of economic development, which vary considerably across China. The second is largely a corollary of the first, referring to mismatch in energy supply and demand, with some places suffering severe shortages while others are blessed with significant surpluses. Western China enjoys the dubious distinction of recording the country's lowest levels of economic development while, paradoxically, being blessed with plentiful reserves of energy and non-energy minerals. Turning those surplus resources to good account through transferring them to minerals and energy-hungry Eastern China is seen by policy-makers as something of a panacea. Not only will such a strategy significantly boost Western China's economic prospects, but it will eliminate the resource shortages currently constraining the East's vibrant growth. The issues of regional disparities, energy mismatches and transfers of these resources are discussed, with attention given to both spatial and time perspectives. The paper concludes with a cautious endorsement of the policy initiatives that promote the strategy of mineral transfers. 相似文献
12.
Mathematical models may provide a means to estimate phosphorus (P) losses from land application of manure. Phosphorus losses typically occur during brief episodes of runoff and erosion. Models must be able to simulate P losses during these episodes by representing the basic chemical, physical, and biological processes by which these losses occur. The mathematical model ecosys combines dynamic distributed flow of solutes and nonsolutes through runoff and erosion with convective-dispersive transport of solutes, and both biologically and thermodynamically driven transformations between solutes and nonsolutes. This model was tested against P lost in runoff, erosion, and leachate measured during 90 min of controlled rainfall at 65 mm h(-1) on soils from six sites at which different rates of manure had been applied over the previous 3 to 6 yr. Transport and transformation kinetics in the model enabled it to simulate changes of dissolved inorganic phosphorus (DIP) in runoff from >1.0 to <0.05 mg L(-1) and changes of total phosphorus (TP) in sediment from 15 to 3 mg L(-1) measured during controlled rainfall on soils with diverse P contents. Results from 60-yr model runs using these kinetics with different application rates of cattle manure indicated that (i) a positive interaction exists between annual rainfall and application rate on P losses and (ii) rates greater than 30 Mg ha(-1) yr(-1) would cause TP concentrations in water leaving the site to rise above acceptable limits. The interaction between rainfall and rate suggests that P losses from manure application at any site should be assessed under the upper range of likely rainfall intensities. 相似文献
13.
Vadas PA 《Journal of environmental quality》2006,35(2):542-547
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%). 相似文献
14.
Practical guidelines addressing the timing of manure and nutrient application must consider the concerns of the farm operators while ensuring the protection of the environment. An approach was developed and analyzed through case studies to determine the first recommended day in the spring, and the last in the fall, for manure and nutrient application based on probability analysis. Since most manure and nutrient application guidelines recommend avoiding adverse conditions, the three criteria established to perform a risk assessment were: (i) a frost depth greater than 0.05 m; (ii) a snow accumulation of greater than 0.05 m; and (iii) a soil volumetric water content greater than or equal to that of the plastic limit for the soil. Climatic data and typical soil information for seven locations in Ontario were used to model volumetric soil water contents, frost depths, and snow accumulation from the simultaneous heat and water (SHAW) model for a 48-yr period (1954-2001). Applying the three criteria to the modeled output, the average range between the least limiting probability (0.1, or one in ten year occurrence) and the greatest limiting probability (0.001, or one in one thousand year occurrence) analyzed among the locations was 16 d in the spring as compared to 29 d in the fall. Although geographical location affected the predicted spring start and fall end recommended manure and nutrient application dates, local climate and soil hydraulic properties also played an important part in the determination of these days. Overall the prediction method developed performed reasonably well and provided insight into the environmental factors influencing manure and nutrient application timing. 相似文献
15.
Nigel Mortimer 《Resources Policy》1980,6(1):19-32
Current economic assessment implies that there are considerable quantities of uranium available for use in present thermal reactors, albeit at very high costs. However, this method of appraisal contains a fundamental contradiction concerning the relationship between the price of electricity and the cost of uranium concentrate. Derivation of real costs with the technique of energy analysis is used to correct this basic inconsistency. This approach demonstrates that the amount of economically recoverable uranium is substantially less than previously expected. Consequently, if current forecasts of nuclear power growth are achieved then serious shortages of uranium will occur in the foreseeable future. 相似文献
16.
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge 总被引:1,自引:0,他引:1
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates. 相似文献
17.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time. 相似文献
18.
The time between swine (Sus scrofa) manure application to soil as a crop fertilizer, the first rainfall event, and the frequency of rainfall events should influence leaching potential of fecal pathogens. Soil microcosms were inoculated in the lab with a swine manure isolate of Escherichia coli, strain RS2G, expressing green fluorescent protein, to examine how timing and frequency of rainfall events influences RS2G leaching and survival in soil. Liquid swine manure inoculated with RS2G was applied to intact soil cores (20 cm in diameter x 30 cm long) 4, 8, or 16 d before the first rainfall event (50.8 mm over a 4-h period), and each core received one to three rainfall events. Manure application methods (no-till surface-broadcast, broadcast and incorporated, and tilled before broadcast) had no affect on leaching, although there was greater survival in soils when the manure had been incorporated. Most of the RS2G in the leachate appeared following the first rainfall event and RS2G leaching decreased with increasing time between manure application and the first rainfall, although leachates contained as much as 3.4 to 4.5 log colony forming units (CFU) 100 mL(-1) of RS2G when the first rainfall occurred 16 d after manure application. With increasing frequency of rainfalls there was a decrease in subsequent concentrations of RS2G in the leachate. There was no correlation between leachate RS2G and total coliforms or fecal streptococci concentrations. Soil RS2G numbers were 1 to 10% of the inoculum regardless of the length of time between manure application and the first rainfall. RS2G leaching was mostly influenced by the time between manure application and first rainfall event, and significant leaching and survival in soil was possible even if the first rain occurred 16 d after manure application. 相似文献
19.
Ferguson RB Nienaber JA Eigenberg RA Woodbury BL 《Journal of environmental quality》2005,34(5):1672-1681
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations. 相似文献
20.
With increasing concern over potential polltion from farm wastes, there is a need for rapid and robust methods that can analyze livestock manure nutrient content. The near infrared spectroscopy (NIRS) method was used to determine nutrient content in diverse poultry manure samples (n=91). Various standard preprocessing methods (derivatives, multiplicative scatter correction, Savitsky-Golay smoothing, and standard normal variate) were applied to reduce data systemic noise. In addition, a new preprocessing method known as direct orthogonal signal correction (DOSC) was tested. Calibration models for ammonium nitrogen, total potassium, total nitrogen, and total phosphorus were developed with the partial least squares (PLS) method. The results showed that all the preprocessed data improved prediction results compared with the non-preprocessing method. Compared with the other preprocessing methods, the DOSC method gave the best results. The DOSC method achieved moderately successful prediction for ammonium nitrogen, total nitrogen, and total phosphorus. However, all preprocessing methods did not provide reliable prediction for total potassium. This indicates the DOSC method, especially combined with other preprocessing methods, needs further study to allow a more complete predictive analysis of manure nutrient content. 相似文献