首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The weekly periodicities in meteorological variables and its association with aerosols in Korea are investigated using long-term surface measurements of meteorology (1975–2005) and aerosols (1999–2005). Through an analysis of the annual (and/or seasonal) values averaged over 10 stations, we identified distinct weekly periodicities in the daily minimum temperature (Tmin), diurnal temperature range (DTR), cloud fraction, and solar insolation, although they have different characteristics from each other. The weekly association among variables is discussed in this study. Positive anomalies of the cloud fraction and Tmin and negative anomalies of solar insolation and DTR are seen for the second half of the week and the reverse for the first half of the week, i.e., more cloudiness and less insolation for Wednesday?Thursday and less cloudiness and more insolation for Monday?Tuesday. Furthermore, seasonal dependence of weekly anomalies shows that the weekly periodicities are enhanced especially in autumn, more than 2–3 times as great as those of the annual mean. The weekly cycles in such variables are most likely driven by changes in cloud fraction, possibly through aerosol–cloud interactions induced by aerosol variations between working weekdays and Sunday, which are clearly identified in PM10 weekly cycles. This study also suggests that the weekly periodicities in meteorological variables are possibly associated with long-range transport of weekly periodicities, as well as aerosol–cloud-precipitation interactions over the region.  相似文献   

2.
Khoder MI 《Chemosphere》2002,49(6):675-684
Sulfur dioxide, nitrogen dioxide, particulate sulfate and nitrate, gaseous nitric acid, ozone and meteorological parameters (temperature and relative humidity) were measured during the winter season (1999-2000) and summer season (2000) in an urban area (Dokki, Giza, Egypt). The average particulate nitrate concentrations were 6.20 and 9.80 microg m(-3), while the average gaseous nitric acid concentrations were 1.14 and 6.70 microg m(-3) in the winter and summer seasons, respectively. The average sulfate concentrations were 15.32 microg m(-3) during the winter and 25.10 microg m(-3) during the summer season. The highest average concentration ratio of gaseous nitric acid to total nitrate was found during the summer season. Particulate sulfate and nitrate and gaseous nitric acid concentrations were relatively higher in the daytime than those in the nighttime. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) defined in the text were calculated from the field measurement data. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) in the summer were about 2.22 and 2.97 times higher than those in the winter season, respectively. Moreover, sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) were higher in the daytime than those in the nighttime during the both seasons. The sulfur conversion ratio (Fs) increases with increasing ozone concentration and relative humidity. This indicates that the droplet phase reactions and gas phase reactions are important for the oxidation of SO2 to sulfate. Moreover, the nitrogen conversion ratio (Fn) increases with increasing ozone concentration, and the gas phase reactions are important and predominant for the oxidation of NO2 to nitrate.  相似文献   

3.
Major volcanic eruptions inject massive amounts of dust and gases into the lower stratosphere and upper troposphere. Stratospheric volcanic aerosols can scatter incoming solar radiation to space, increasing planetary albedo, reducing the total amount of solar energy reaching the troposphere and the earth's surface, and decreasing the daytime maximum temperature (aerosol shortwave forcing). They can also absorb and scatter outgoing terrestrial longwave radiation, increasing the nighttime minimum surface temperature (longwave forcing). However, persuasive evidence of climate response to this forcing has thus far been lacking. Here we examine patterns of annual and seasonal variations in mean maximum and minimum temperature trend during the periods 1992–1994 and 1985–1987 relative to that during the period 1988–1990 at 47 stations in the southeastern U.S. for evidence of such climate responses. The stratospheric volcanic aerosol optical depths over the southeastern U.S. during the period 1985–1994 were inferred from the Stratospheric Aerosol and Gases Experiment (SAGE) 11 satellite extinction measurement. After the long-term trend signals are removed, it is shown that the dominant decreasing trend of mean maximum temperature and the dominant increasing trend of mean minimum temperature over periods 1992–1994 and 1985–1987 relative to that over the period 1988–1990 are consistent with the distribution of stratospheric volcanic aerosols and predictions from aerosol radiative forcing in the southeastern U.S.  相似文献   

4.
Exposure estimates based solely on proximity to air pollution sources are not sound and require confirmation. Accordingly, since a very limited amount of actual data for this type of exposure estimate is currently available, this study was conducted to provide actual data on residents' exposure to two important gasoline constituents [methyl tertiary butyl ether (MTBE) and benzene] relative to their proximity to roadside service stations. The results confirmed that residents in neighborhoods near service stations are exposed to elevated ambient MTBE and benzene levels compared with those living farther from such a source. However, it was also found that the presumed elevated outdoor benzene levels (a mean of 1.7 ppb) even in close proximity to service stations did not exceed the indoor levels (a mean of 2.2 ppb) of exposure for those living nearby. Regardless of residents' distance from service stations, an indoor source (cigarette smoking) appeared to be the major contributor to their benzene exposure. Conversely, for MTBE, roadside service stations were found to be the major contributor to residents' exposure. In addition, the residents close to the stations were exposed to elevated indoor and outdoor MTBE levels. The sampling period (daytime and nighttime) and season (winter and summer) were additional parameters for the outdoor MTBE and benzene levels and the indoor MTBE levels. Meanwhile, the breathing zone air concentrations of service station attendants for both MTBE and benzene were significantly higher than those of drivers (p < 0.05). In addition, the breathing zone concentrations were significantly higher during summer than during winter for both drivers and attendants (p < 0.05).  相似文献   

5.
A 60-m flux tower was built on a 2100 m mountain for the measurement of the air pollutant concentration and the evaluation of dry deposition velocity in Central Taiwan. The tower was constructed in an evergreen broadleaf forest, which is the dominant species of forest in the world. Multiple-level SO2 concentrations and meteorological variables at the site were measured from February to April 2008. The results showed that the mean dry deposition velocities of SO2 were 0.61 cm s?1 during daytime and 0.27 cm s?1 during nighttime. From the comparison of the monthly data, a tendency was observed that the dry deposition velocity increases with LAI and solar radiation. Furthermore, it was observed that the deposition velocity was larger over wet canopy than over dry canopy, and that higher deposition velocities in the wet season were mainly caused by non-stomatal uptake of wet canopy. Over wet canopy, the mean dry deposition velocities of SO2 were estimated to be 0.83 cm s?1 during daytime and 0.47 cm s?1 during nighttime; and 0.44 cm s?1 during daytime and 0.19 cm s?1 during nighttime over dry canopy. There is good agreement between the results of this study and those in other studies and the predictions of Zhang et al. (2003a). The medians (geometric means) of derived rc during daytime are 233 (266) m s?1 over dry canopy and 147 (146) m s?1 over wet canopy. It was found that solar radiation is the critical important meteorological variable determining stomatal resistance during daytime. For non-stomatal resistance, clear dependencies were observed on the friction velocity and relative humidity.  相似文献   

6.
The pollutant tropospheric ozone causes human health problems, and environmental degradation and acts as a potent greenhouse gas. Using long-term hourly observations at five US air quality monitoring surface stations we studied the seasonal and diel cycles of ozone concentrations and surface air temperature to examine the temporal evolution over the past two decades. Such an approach allows visualizing the impact of natural and anthropogenic processes on ozone; nocturnal inversion development, photochemistry, and stratospheric intrusion. Analysis of the result provides an option for determining the duration for a regulatory ozone season. The application of the method provides independent confirmation of observed changes and trends in the ozone and temperature data records as reported elsewhere. The results provide further evidence supporting the assertion that ozone reductions can be attributed to emission reductions as opposed to weather variation. Despite a (~0.5 °C decade?1) daytime warming trend, ozone decreased by up to 6 ppb decade?1 during times of maximum temperature in the most polluted locations. Ozone also decreased across the emission reduction threshold of 2002 by 6–10 ppb indicating that emission reductions have been effective where and when it is most needed. Longer time series, and coupling with other data sources, may allow for the direct investigation of climate change influence on regional ozone air pollution formation and destruction over annual and daily time scales.  相似文献   

7.
Since meteorological changes strongly affect ambient ozone concentrations, trends in concentrations of ozone upon the adjustment of meteorological variations are important of evaluating emission reduction efforts. The goal of this work is to study meteorological effects on the long-term trends of ozone concentration using a multi-variable additive model. Data on the hourly concentrations of ozone were collected from four air-quality stations from 1997 to 2006 in Kaohsiung County to determine the monthly, seasonal and annual average concentrations of ozone. The model incorporates seven meteorological parameters – pressure, temperature, relative humidity, wind speed, wind direction, duration of sunshine and cloud cover. The simulated results show that the long-term ozone concentration increases at 13.84% (or 13.06%) monthly (or annually) after meteorological adjustments, less than at 26.10% (or 23.80%) without meteorological adjustments. Wind speed, duration of sunshine and pressure are the three dominant factors that influence the ground-level ozone levels.  相似文献   

8.
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950–2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.  相似文献   

9.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.  相似文献   

10.
The Monterrey Metropolitan Area (MMA) is the third largest city in Mexico. Few studies have been carried out regarding its air pollution. The aim of this study was to analyze the temporal behavior of PM10 (particulate matter < or =10 microm in aerodynamic diameter). Data reported by the "Sistema Integral de Monitoreo Ambiental" (Integrated Environmental Monitoring System) network from 2006 to 2008 were used. PM10 levels were compared among the stations by year, season, and day of week. A bootstrap technique was used to obtain subsamples to which Student's t test and ANOVA were applied. PM10 levels were high and exceeded the annual limit of 50 microg/m3 set up by the Mexican standard Norma Oficial Mexicana NOM-025-SSA1-1993. These levels could have serious health effects. The southwest zone of MMA had the highest levels of PM10 during the period studied. Winter was the most polluted season, and summer was the least polluted season. Thursday and Friday were the most polluted days, and Sunday was the least polluted day. The hours with the highest levels of PM10 were 8:00 to 10:00 a.m., whereas nighttime hours were the cleanest.  相似文献   

11.
Fang GC  Wu YS  Huang SH  Rau JY 《Chemosphere》2004,56(6):509-518
Downward, upward dry deposition fluxes and total suspended particulate of particulate heavy metals (Fe, Pb, Zn, Cu, Mg and Mn) were measured in daytime and nighttime period in Sha-Lu, a small city in the central Taiwan during summer period of 2003. The results showed that the total suspended particulate concentrations of particulate mass in the daytime period (averaged 996.2 g/m3) were higher than in nighttime period (averaged 560.7 g/m3). And the downward dry deposition fluxes (averaged 54.07 g/m2s) were about two times as that of upward dry deposition fluxes (averaged 26.48 g/m2s) in the daytime period. Furthermore, the average downward dry deposition fluxes (averaged 26.22 g/m2s) were also about two times as that of upward dry deposition fluxes (averaged 12.11 g/m2s) in the nighttime period. In addition, the average downward dry deposition fluxes are greater than the upward dry deposition fluxes for all the heavy metals in either daytime or nighttime period. The proposed reasons are that the wind speed and concentration difference for daytime and nighttime period lead to these results at the traffic sampling site of central Taiwan. In addition, the deposition velocity for mass, heavy metals (Fe, Pb, Zn, Cu, Mg and Mn) during daytime and nighttime period were also calculated. The average daytime dry deposition velocity for downward particulate mass, upward particulate mass, Fe, Pb, Zn, Cu, Mg and Mn were 5.56, 2.66, 1.71, 0.18, 1.06, 0.24, 0.47 and 0.11 (cm/s), respectively. And the average nighttime dry deposition velocity for downward particulate mass, upward particulate mass, Fe, Pb, Zn, Cu, Mg and Mn were 4.70, 2.11, 1.66, 0.18, 0.86, 0.23, 0.32 and 0.07 (cm/s), respectively at traffic sampling site of central Taiwan.  相似文献   

12.
The concentrations of total gaseous mercury (Hg) were determined at hourly intervals along with relevant environmental parameters that include both meteorological plus criteria pollutant data during two field campaigns (September 1997 and May/June 1998). The mean concentrations of Hg for the two study periods were computed as 3.94 and 3.43 ng m−3, respectively. By separating the data into daytime and nighttime periods, we further analyzed diurnal variation patterns for both seasons. Using our Hg data sets, we were able to recognize two contrasting diurnal variation patterns of Hg between two different seasons that can be characterized as: (1) the occurrences of peak Hg concentration during daytime (fall) and (2) slight reductions in daytime Hg concentration relative to nighttime (summer). To study the systematic differences in diurnal patterns between two different seasons, we analyzed Hg data in terms of different statistical approaches such as correlation (and linear regression) and factor analysis. Results of these analyses consistently indicated that different mechanisms were responsible for controlling the daytime distribution patterns of Hg. When the relationship between Hg and concurrently determined O3 is considered, its reaction with ozone is unlikely to limit Hg levels as the dominant sink mechanism (within the ranges of ozone concentrations found during this study, regardless of season). It is on the other hand suspected that the variation of boundary layer conditions between day/night periods may have been important in introducing the relative reduction in daytime Hg levels during summer. To further provide a general account of short-term variations in Hg distribution data, it is desirable to describe other unknown sink mechanisms.  相似文献   

13.
The tropospheric column of ozone is analyzed from the measurements of the vertical profile of ozone by balloon-born ozonesondes. The data base includes ∼16,000 ozone profiles collected above six European stations—three of them have begun the ozonesoundings since 1970. We present a trend analysis (with data up to 2005) focusing on detection of the long-term tropospheric ozone variability over the European network. The ozone time series have been examined separately for each station and season (DJF, MAM, JJA, SON) using a flexible trend model. A trend component of the model is taken as a smooth curve without a priori defined shape. A large increase in the European tropospheric ozone since the beginning of the 1970s (net change of ∼10% in summers and ∼30% in winters) and a kind of stabilization in the early 1990s have been corroborated by the study. This pattern comes from the most extensive data set of ozonesoundings over Hohenpeissenberg and Payern. The decadal differences in the trend pattern between these and other European stations are disclosed. The results of a stepwise regression model using various characteristics of the ozone and temperature profiles as explanatory variables for the tropospheric column ozone (TCO3) variations show that the ozone changes may be reconstructed using the ozone mixing ratio at 500 hPa, the thermal tropopause (TT) height, and the difference between ozonepause and TT heights. It appears that the last two factors induce 20–30% of the net TCO3 change over Hohenpeissenberg in the 1970–2004 period.  相似文献   

14.
This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m?3. However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.  相似文献   

15.
Adams JM  Piovesan G 《Chemosphere》2005,59(11):1595-1612
Interannual variability in global CO2 increment (averaged from the Mauna Loa and South Pole Stations) shows certain strong spatial relationships to both tropical and temperate temperatures. There is a fairly strong positive year-round correlation between tropical mean annual temperatures (leading by 4 months) and annual CO2 throughout the time series since 1960, agreeing with the generally held view that the tropics play a major role in determining inter-annual variability in CO2 increment, with a major CO2 pulse following a warm year in the tropics. This ‘almost no lag’ climatic response is very strong during winter and relatively stable in time. However, the correlation with tropical temperature appears to have weakened in the first years of the 1990s in correspondence of the Pinatubo eruption and the positive phase of the AO/NAO. A secondary concurrent temperature signal is linked to summer variations of north temperate belt. Northern summer temperatures in the region 30–60 °N—and especially in the land area corresponding to the central east USA—have become relatively more closely correlated with CO2 increment. This trend has become increasingly stronger in recent years, suggesting an increasing role for growing season processes in the northern midlatitudes in affecting global CO2 increment. Once non-lagged annual tropical temperature variations are accounted for, terrestrial ecosystems, especially the temperate-boreal biomes, also show a coherent large scale lagged response. This involves an inverse response to annual temperature of preceding years centered at around 2 years before. This lagged response is most likely linked to internal biogeochemical cycles, in particular N cycling. During the study period north boreal ecosystems show a strengthening of the lagged correlation with temperature in recent years, while the lagged correlation with areas of tropical ecosystems has weakened. Residuals from a multiple correlations based on these climatic signals are directly correlated with SO, confirming an additional important role of upwelling in interannual variability of CO2 increment. Cooler summers following the Pinatubo eruption and the possible influence of the North Atlantic Oscillation (NAO/AO) are discussed as factors responsible for the shift in the relative importance of different regions over time during the series of data.  相似文献   

16.
An attempt has been made to examine the seasonal variation of the surface ozone mixing ratio in Athens, Greece during the periods 1901–1940 and 1987–1998. The first finding is that in July and August while the daytime surface ozone mixing ratio from the beginning until the end of the 20th century has increased by approximately 1.8 times, the nighttime surface ozone mixing ratio remained approximately at the same level. The second finding is that the increase in the mean daytime mixing ratio during the transition period from winter to summer is equal to the increase in the maximum daytime mixing ratios, whilst the enhancement of the nighttime surface ozone maxima is stronger than that of the nighttime mean surface ozone mixing ratio. Plausible explanation for this finding is given through mechanisms like long-range transport and photochemical processes occurring in the boundary layer, free troposphere and lower stratosphere.  相似文献   

17.
Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson’s correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June–July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.  相似文献   

18.
A method of deriving 3 air pollution potential indexes based on selected climatic data and meso-climate topographic factors have been developed, though not yet adequately field tested, for use by engineers in choosing between alternate factory sites. Three indexes, one for general air pollution, one for photoreac-tive air pollutants, and one for fog-reactive air pollutants, the latter two based on the first one plus sunshine and humidity factors respectively, are presented. These indexes vary with locations, not with air pollutants or time. The first index, called the GSI (General Stagnation Index) is based on a series of national maps which present a variety of climatic parameters pertinent to air pollution potential for the mid-season months of July and October. These maps, useful by themselves, have been derived from climate records from 129 Weather Bureau airport stations and from radiosonde data. The parameters used include wind speed percentages in the 0-3 and 0-12 mile/hr categories, cloud cover percentages, a nighttime stagnation factor, and a vertical ventilation factor. The GSI provides a means of estimating the additional climatic stagnation that occurs in topographically sheltered areas due to width, height and area of the valley (if present), further modified by meso- and micro-climatological factors, such as angle and aspect of slope, solar intensity, sky cover and character of surface. Specialized wind speed summaries from a variety of topographical configurations in West Virginia resulted in a graph which may be helpful in such calculations for any sheltered location from a nearby measurement of relatively unrestricted air flow such as are typically measured at the Weather Bureau airport stations.Weaknesses and possible uses of the various stagnation indexes are discussed.  相似文献   

19.
In this paper, results on a PM10 daytime–nighttime measurement campaign carried out in Milan to study the evolution of PM10 concentration and composition in relation to atmospheric dispersion conditions are shown. To account for the evolution of atmospheric dispersion conditions, Radon hourly concentration measurements were performed. The significant correlation between PM10 and 222Rn daytime concentrations evidences the dominant role of atmospheric dispersion in determining the temporal variation of PM10 levels. Whenever 222Rn concentrations accumulate during the night (indicating the formation of nocturnal atmospheric stability conditions), PM10 concentrations are higher than those registered during the daytime before, despite a decrease in emissions from active sources. On the contrary, when 222Rn concentrations do not accumulate during night hours, PM10 levels are lower than those measured during the daytime before.As concerns the average elemental concentrations (in ng m−3), the nighttime–daytime variations are in the range −17% to +37%; during the night, soil-related elements (Al, Si, Ca, Ti) decrease while anthropogenic elements (Zn, Cu, Fe, Pb) increase.A case study concerning a ‘green’ Sunday (when traffic was forbidden from 8 a.m. to 8 p.m.) is also discussed. The difference of PM10 concentration and elemental composition registered during the ‘green’ Sunday daytime and the following nighttime, together with the information on atmospheric dilution power obtained by Radon measurements, allowed the characterisation of the traffic source elemental profile and increased the comprehension of the low effectiveness of some PM10 reduction strategies.  相似文献   

20.
ABSTRACT

A multi-system, high-volume, parallel plate diffusion dénuder Brigham Young University Organic Sampling System (BIG BOSS) was tested using collocated samplers at the Pico Rivera Monitoring Station of the South Coast Air Quality Management District, South Coast Air Basin, in September 1994. Six-hr daytime and 9-hr nighttime samples were collected with a flow of about 200 L/min through each of the three systems designed to collect particles smaller than 2.5, 0.8, and 0.4 mm in a diffusion denuder sampler. Efficiency for the removal of gas phase organic compounds by the diffusion denuder was evaluated using both theoretical predictions and field measurements. Both measured and calculated data indicate high denuder efficiency for the removal of gas phase aromatic and paraffinic compounds. The precision of the BIG BOSS was evaluated using collocated samplers. The precision of determination of total carbon and elemental carbon retained by a quartz filter or of semi-volatile carbonaceous material lost from particles during sampling averaged ±7%. The precision of determination of individual organic compounds averaged ±10%. An average of 42 and 62% of the particulate organic material was semi-volatile organic compounds (SVOCs) lost from particles during sampling for daytime and nighttime samples, respectively. This “negative” sampling artifact was an order of magnitude larger than the “positive” quartz filter artifact due to adsorption of gas phase organic material. Daytime concentrations of fine particulate elemental carbon and nonvolatile organic carbon were higher than nighttime concentrations, but nighttime fine particles contained more semi-volatile organic material than daytime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号