首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first observations of size-dependent cloud and fog drop inorganic ion and trace metal concentrations obtained using the Colorado State University 5-Stage cloud water collector (CSU 5-Stage) during field studies of orographic clouds (Whiteface Mountain, NY, July 1998) and radiation fogs (Davis, CA, January 1999) are reported. Although some mixing between drop sizes occurs, the CSU 5-Stage effectively separates the largest drops (>≈30 μm in diameter) from the smallest ones (<≈10 μm in diameter) permitting the discernment of size-dependent drop composition not possible with previous two- or three-stage collectors. At Whiteface, pH and the concentrations of the “major” ions −NH4+, NO3, and SO42−—appeared largely independent of drop size as measured by a two-stage collector. The same major ion concentrations differed in Davis fogs by up to a factor of approximately 10 in the two-stage collector with consistently higher small drop concentrations. In both locations, CSU 5-Stage data generally indicate a greater range of concentrations is present across the drop size spectrum. CSU 5-Stage data show “U”- shaped profiles of major ion concentration vs. drop size at Whiteface and “L”- shaped profiles at Davis and the maximum/minimum concentration differences between fractions increased up to a factor of 2 (Whiteface) and 30 (Davis). Lower concentration species at both locations showed multiple concentration vs. drop size profiles with CSU 5-Stage data again exhibiting more variability than observed with the two-stage collector. While rarely reported, significant nitrite concentrations—relatively higher in the larger drops—were observed, and copper concentrations merit further investigation in the Davis fogs. The findings presented here are consistent with other studies. The implications and benefits of the increased resolution of size-dependent drop composition provided by the CSU 5-Stage are explored for the Davis fogs in a companion paper (Moore et al., Atmos. Environ. (2004), this issue).  相似文献   

2.
Fog water, aerosol, and gas were separately collected at Mt. Rokko (altitude 931 m) in Kobe, Japan, using a new sampling method at a mountainous site near a highly industrialized area. The fog water was collected by an active string-fog collector and the aerosol and gas by using the filter pack method. Using plural filter packs and controlling or switching the airflow before, during, and after a fog event made it possible to collect the fog water, aerosol, and gas separately. Nitrate species such as NO3(p) and HNO3(g) were effectively scavenged by fog water, while sulfur species such as SO42−(p) and SO2(g) could not be easily and effectively scavenged because of the poor solubility of SO2(g). This difficulty was experimentally examined through an in situ investigation. Ion species (especially Na+(p) and Ca2+(p)) which form coarse particles were easily and effectively scavenged by fog water. On the other hand, the difficulty of scavenging Mg2+(p) could not be explained by particle size.  相似文献   

3.
In the Southeastern US, organic carbon (OC) comprises about 30% of the PM2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.  相似文献   

4.
The chemical composition and transfer routes of the Arctic aerosol during summer have been studied at Ny-Alesund, Bjørnøya, Hopen and Jan Mayen in the period August/September 1983. Samples were also collected on mainland Norway to assess the origin of aerosols transported to the Norwegian Arctic. The concentrations of Si, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Pb, Zn and Cu were measured in samples from a six-stage cascade impactor of Battelle design by particle-induced X-ray emissions (PIXE). The concentrations of Cd, Ni, Pb and Zn were also measured in samples from high-volume samplers by atomic absorption spectrophotometry (AAS).Three interesting periods were identified from the element concentrations. At the beginning of the measurement campaign, the air pollutants measured at Ny-Alesund and Hopen most likely originated in northern America and Greenland. A few days later, very high concentrations of Cd and Zn at Ny-Alesund seemed to be due to air mass transfer from the Soviet Union. During the last episode, observed at Ny-Alesund and Hopen in September, elevated concentrations of several anthropogenic pollutants appeared to be due to emissions in Europe.The results show that anthropogenic emissions from sources in western Europe, Eurasia and northern America may pollute the Arctic air not only in winter but in summer as well. Present levels of air pollutants in the Norwegian Arctic in summer are within the range of levels observed in other remote regions, but are one order of magnitude higher than in Antarctica.  相似文献   

5.
Size distribution (fine and coarse fraction) and solubility distribution (extracted and residual fraction) of 20 elements (As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Pb, Ni, Rb, S, Sb, Se, Sn, Sr, Ti, Tl, V) in atmospheric particulate matter (PM) were determined during a 5-year field study carried out in the Po Valley (peri-urban area of Ferrara, in Northern Italy). By studying the contribution of the two size fractions and the two solubility fractions to the atmospheric concentration of each element, it was possible to obtain interesting information about the variability of PM sources, to assess the role played by atmospheric stability in determining pollution episodes, and to obtain an estimate of the bio-accessible fraction. Atmospheric stability is confirmed to be one of the main causes of atmospheric pollution in this area and is to be responsible for the pronounced winter increase in both PM and elemental concentration. Long-range transport of natural and polluted air masses caused temporary increases in PM and elemental concentration, while local industrial emission seemed to play a secondary role. Regulated elements were well below their concentration limit, but many toxic elements were in the form of fine particles and soluble chemical species, more accessible to the environment, and the human body.  相似文献   

6.
The light scattering and absorption coefficients of fine atmospheric aerosol particles were recorded in Hungary under rural conditions in 1998–1999 by an integrating nephelometer and particle soot absorption photometer, respectively. In some cases optical properties in the fine size range were compared to those in the coarse particles. Results obtained indicate, as expected, that fine particles control the scattering and absorption caused by the aerosol. In 1999 the size distribution of aerosol particles was also monitored by means of an electric low pressure impactor (ELPI). This makes it possible the study of the relationship between the number, surface and mass concentration in the size range of 0.1–1.0 μm and the optical characteristics by also considering the chemical composition of the particles.  相似文献   

7.
The aim of this study was to identify areas of potential relevant exposure to pollutants within Rome's urban core. To meet this goal, intensive field campaigns were conducted and simulations were performed, using the flexible air quality regional model (FARM), to study winter and summer pollution episodes. The simulations were performed using a complete emission inventory that included traffic flow model results of the Roman street network to better describe, with respect to the available diffuse national emission inventory, the hourly variation of traffic emissions in the city. The meteorological reconstruction was performed by means of both prognostic and diagnostic models by using experimental data collected during the field campaigns. To evaluate the capability of the FARM model to capture the main features of the selected episodes, a comparison of modelled results against observed air quality data for different pollutants was performed at urban and rural sites. FARM performed well in predicting ozone (O3) and nitrogen dioxide (NO2) concentrations, showing a good reproduction of both daily peaks and their diurnal variations. The model also showed a good capability to reproduce the magnitude of volatile alkane, aromatic and carbonyl compound concentrations. PM10 model results revealed the tendency to under-predict the observed values. PM composition model results were compared with observed data, evidencing good results for elemental carbon (EC), nitrate (NO3) and ammonium (NH4+), underestimation for sulphate (SO42−) and poor performance for organic matter (OM). The soil components of PM were found to be significantly under-predicted by the model, especially during Saharan dust episodes. Overall, the study results show large areas of high O3 and PM10 concentrations where levels of pollutants should be carefully monitored and population exposure evaluated.  相似文献   

8.
The mass concentrations of inorganic ions, water-soluble organic carbon, water-insoluble organic carbon and black carbon were determined in atmospheric aerosol collected at three European background sites: (i) the Jungfraujoch, Switzerland (high-alpine, PM2.5 aerosol); (ii) K-puszta, Hungary (rural, PM1.0 aerosol); (iii) Mace Head, Ireland (marine, total particulate matter). At the Jungfraujoch and K-puszta the contribution of carbonaceous compounds to the aerosol mass was higher than that of inorganic ions by 33% and 94%, respectively. At these continental sites about 60% of the organic carbon was water soluble, 55–75% of the total carbon proved to be refractory and a considerable portion of the water soluble, refractory organic matter was composed of humic-like substances. At Mace Head the mass concentration of organic matter was found to be about twice than that of nonsea-salt ions, 40% of the organic carbon was water soluble and the amount of highly refractory carbon was low. Humic-like substances were not detected but instead low molecular weight carboxylic acids were responsible for about one-fifth of the water-soluble organic mass. These results imply that the influence of carbonaceous compounds on aerosol properties (e.g. hygroscopic, optical) might be significant.  相似文献   

9.
The seasonal variability in the mass concentration and chemical composition of atmospheric particulate matter (PM10 and PM2.5) was studied during a 2-year field study carried out between 2010 and 2012. The site of the study was the area of Ferrara (Po Valley, Northern Italy), which is characterized by frequent episodes of very stable atmospheric conditions in winter. Chemical analyses carried out during the study allowed the determination of the main components of atmospheric PM (macro-elements, ions, elemental carbon, organic matter) and a satisfactory mass closure was obtained. Accordingly, chemical components could be grouped into the main macro-sources of PM: soil, sea spray, inorganic compounds from secondary reactions, vehicular emission, organics from domestic heating, organics from secondary formation, and other sources. The more significant seasonal variations were observed for secondary inorganic species in the fine fraction of PM; these species were very sensitive to air mass age and thus to the frequency of stable atmospheric conditions. During the winter ammonium nitrate, the single species with the highest concentration, reached concentrations as high as 30 μg/m3. The intensity of natural sources was fairly constant during the year; increases in natural aerosols were linked to medium and long-range transport episodes. The ratio of winter to summer concentrations was roughly 2 for combustion product, close to 3 for secondary inorganic species, and between 2 and 3 for organics. The winter increase of organics was due to poorer atmospheric dispersion and to the addition of the emission from domestic heating. A similar winter to summer ratio (around 3) was observed for the fine fraction of PM.  相似文献   

10.
The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998-1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10-2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999-2003) of filter-based PM2.5 and PM10-2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 microg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 microg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3-7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for approximately 60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components ("other") account for > or = 80% of PM10-2.5 mass. Limited data suggest that much of the unidentified mass in PM10-2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and "other." Annual means for PM2.5 and PM10-2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999-2003 period (10-20% in the case of PM2.5, dominated by 14-20% declines in sulfate and 11-26% declines in OM, and 14-25% in the case of PM10-2.5, dominated by 17-30% declines in MMO and 14-31% declines in "other"). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

11.
12.
Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1–30 ng m?3 (corresponding to 15–35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2–11 pg m?3 (4–26 % of the total) and of DDT compounds were 2–12 pg m?3 (4–23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles <0.45 μm of aerodynamic equivalent diameter. The mass fractions associated with sub-micrometer particles (PM0.95) were 73–90 %, 34–71 % and 36–81 % for PAHs, PCBs and DDT compounds, respectively. The finest particles fraction had the highest aerosol surface concentration (6.3–29.7)×10?6 cm?1 (44–70 % of the surface concentration of all size fractions). The data set was used to test gas-particle partitioning models for semivolatile organics for the first time in terms of the organics' MSD and size-dependent PM composition. The results of this study prove that at the various sites particles with diverse size, matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment.  相似文献   

13.
Previous investigations in this laboratory have demonstrated that the mutagenic activities of extractable particulate organic matter (EOM) from cities which differ in their principal fuels and meteorology can vary significantly. To gain a better understanding of these interurban variations, an Integrated Chemical Class/Biological Screening System was developed and used for a more detailed examination of differences in the chemical composition and mutagenic activity of EOM. The screening system involved coupling in situ Ames mutagenicity determinations on high performance thin layer chromatography (HPTLC) plates with class specific chemical analyses on a second set of plates. The system was used to screen for mutagenic activity and selected chemical classes (including PAH, nitro-PAH, phenols, carboxylic acids, carbonyls, aza-arenes and alkylating agents) in EOM from the following sites: New York City; Elizabeth, N.J.; Mexico City; Beijing, China; Philadelphia, PA; and the Caldecott Tunnel (CA).The results of this study demonstrated mutagenic activity and chemical compositional differences in HPTLC subfractions of particulate organic matter from these cities and from the Caldecott Tunnel. The greatest interurban differences in chemical classes were observed for the phenols, carbonyl compounds and alkylating agents. Interurban variations in mutagenic activities were greatest for EOM subfractions of intermediate polarity. These differences are probably related to interurban differences in the fuels used, types of sources and atmospheric conditions. The relationships between these variables are not well understood at present.  相似文献   

14.
This paper presents a multi-pollutant sensitivity study of an air quality model over Europe with a focus on aerosols. Following the evaluation presented in the companion paper, the aim here is to study the sensitivity of the model to input data, mathematical parameterizations and numerical approximations. To that end, 30 configurations are derived from a reference configuration of the model by changing one input data set, one parameterization or one numerical approximation at a time. Each of these configurations is compared to the same reference simulation over two time periods of the year 2001, one in summer and one in winter. The sensitivity of the model to the different configurations is evaluated through a statistical comparison between the simulation results and through comparisons to available measurements. The species studied are ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3), coarse and fine aerosol particles (PMc and PM2.5), sulfate, nitrate, ammonium, chloride and sodium.For all species, the modeled concentrations are very sensitive to the parameterization used for vertical turbulent diffusion and to the number of vertical levels. For the other configurations considered in this work, the sensitivity of the modeled concentration to configuration choice varies with the species and the period of the year. O3 is impacted by options related to boundary conditions. PMc is sensitive to sea-salt related options, to options influencing deposition and to options related to mass transfer between gas and particulate phases. PM2.5 is sensitive to a larger number of options than PMc: sea-salt, boundary conditions, heterogeneous reactions, aqueous chemistry and gas/particle mass transfer. NO2 is strongly influenced by heterogeneous reactions. Nitrate shows the highest variability of all species studied. As with NO2, nitrate is strongly sensitive to heterogeneous reactions but also to mass transfer, thermodynamic related options, aqueous chemistry and computation of the wet particle diameter. While SO2 is mostly sensitive to aqueous chemistry, sulfate is also sensitive to boundary conditions and, to a lesser extent, to heterogeneous reactions. As with nitrate, ammonium is largely impacted by the different configuration choices, although the sensitivity is slightly lower than for nitrate. NH3 is sensitive to aqueous chemistry, mass transfer and heterogeneous reactions. Chloride and sodium are impacted by sea-salt related options, by options influencing deposition and by options concerning the aqueous-phase module.  相似文献   

15.
The size-segregated chemical composition of atmospheric aerosol particles (aerodynamic diameter Dpaer = 0.05–10 μm) was studied to reveal differences between seasons (winter/summer), air mass origins (East/West/North), and days of the week (weekday/Sunday). The goal was to identify the different particle emission sources for the first time at a kerbside in the city of Dresden, Germany.Ultra-fine particles (Dpaer = 0.05–0.14 μm, 12% of PM10) consisted of approximately 80% OM (organic matter) and EC (elemental carbon), while fine particles (Dpaer = 0.14–1.2 μm) comprised about 55% ionic compounds with 44% OM and EC. The coarse fraction (Dpaer = 1.2–10 μm) consisted of approximately 65% ions/OM/EC and 20% metal oxides.Pb, Zn, and Cu showed crustal enrichment factors (CEFSi) > 100 for all particle sizes indicating strong anthropogenic influence. The Zn source was coal burning rather than traffic emissions. Doubled concentrations in winter were likely caused by coal combustion (Pb) and biomass burning (K), but also by a lower mixing layer height. Air masses from the East caused higher Pb and K concentrations. The origin of air masses had almost no influence on Cu, Cr, Fe, Mn, Zn and Ca, Si, Ti, indicating local sources such as traffic and heating. Possible actions against particle emissions are discussed.  相似文献   

16.
The appearance of cyanobacteria ( > 10 colony per ml) was not prevented after alum treatment. In order to prevent cyanobacteria efflorescences in a small shallow polymictic lake (Courtille, France), copper sulfate was applied. Treatment level was 63 microg 1(-1) as Cu2+ from CUSO4, 5 H2O. Cyanobacteria were kept under control during the summer. Microcystis sp. completely disappeared, which allowed swimming in the lake throughout the tourist season. Microcystis only reappeared 2 months after the treatment. Copper content in the water column only returned to its background level 2 months after copper addition. This high residence time of copper in the water might have been caused by complexation and adsorption of copper on natural organic matter, whose level was high in the ecosystem studied. A mechanism of transfer of 'truly' dissolved copper towards particulate copper has been underlined and explains the disappearance of this fraction of copper in the water column.  相似文献   

17.
A global increase in biological nutrient removal (BNR) applications in wastewater treatment and concern for potential effects of anthropogenic substances on BNR processes resulted in the adaptation of the Continuous Activated Sludge (CAS) laboratory test system (cf. guideline OECD 303A or ISO 11733). In this paper two novel systems are compared to the standard CAS unit: the Behrotest KLD4 and a University of Cape Town system (CAS-UCT). Both are 'single sludge' systems with an anoxic/aerobic and an anaerobic/anoxic/aerobic configuration, respectively. They both can simulate the essential processes of full-scale BNR installations. The units where fed with a specially designed synthetic sewage, Syntho (cf. Part I of this study), or its precursor BSR3 medium. The performance of the two new units was benchmarked against the standard CAS system in terms of carbon/nitrogen/phosphorus (C/N/P) removal, as well as primary biodegradation of the surfactants linear alkylbenzene sulfonate (LAS) and glucose amide (GA). Both systems allow to easily achieve stable excess N- and P-removal. Experimental C/N/P removal data compared closely with simulations obtained with the IAWQ Activated Sludge Model No. 2 (ASM2), and with full scale BNR plants with a similar configuration. In both units the effluent concentrations of the surfactants tested were significantly reduced in comparison to the standard CAS system (up to 50% less). No adverse effects on BNR were noted for the test surfactants dosed at 400 microg/l together with an overall surfactant background concentration in the feed of ca. 20 mg/l. The proposed systems hold potential to complement the standard CAS system for situations where advanced sewage treatment plants with BNR need to be simulated in the laboratory with minimum effort.  相似文献   

18.
A source-resolved model has been developed to predict the contribution of different sources to primary organic aerosol concentrations. The model was applied to the eastern US during a 17 day pollution episode beginning on 12 July 2001. Primary organic matter (OM) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. Individual emission inventories are developed for each source and a three-dimensional chemical transport model (PMCAMx) is used to predict the primary OM and EC concentrations from each source. The source-resolved model is simple to implement and is faster than existing source-oriented models. The results of the source-resolved model are compared to the results of chemical mass balance models (CMB) for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for some of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. It also appears that the OM and EC emissions from wood burning and off-road diesel are too high in the Northeastern US. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OM and EC are discussed along with problems in the current emission inventory for certain sources.  相似文献   

19.
Hydrotalcite-like materials, or otherwise termed layered double hydroxides, are clays with an ability to remove anions. As they usually are in powder form, these sorbents often present appreciable problems in the solid/liquid separation process following the sorption stage. Sorptive flotation of metal-loaded particles was investigated in this paper, as an alternative two-stage process. In the sorption process, satisfactory removals of arsenic(V) were obtained onto synthetic hydrotalcite particles from water. The effect of some parameters, like the solution ionic strength, concentrations, temperature, etc. was examined. During the second stage of the process, hydrotalcite fine particles were removed from the liquid phase by dispersed-air flotation; various surfactants were tested in relation to the ionic strength of the solution. The combined process of sorptive flotation provides promising results for arsenic removal.  相似文献   

20.
Lobes of the lichen Pseudevernia furfuracea (L.) Zopf and shoots of the moss Hypnum cupressiforme Hedw. were subjected to different treatments (water washing, oven drying, HNO3 washing, NH4-oxalate extraction) to assess the influence of vitality on accumulation efficiency, during a 6-week exposure in bags in two Italian cities, Trieste and Naples. No trend emerged between treatments, in terms of accumulation ability, for major and trace elements. Only water-washed lichens showed an increased C and N content after exposure in both cities. Element concentrations generally reached higher values in mosses than in lichens, especially for Al, Fe, and Zn (both cities), and for Cu, Mg and Na (Naples). Surface development strongly influenced accumulation capacity of the biomonitors. Quartzose and cation exchange filters revealed, on a weight basis, a poor performance. In urban environments, surface interception of atmospheric particulate seems to play a major role in accumulation, irrespective of organism vitality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号