首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The trends in and relationships between ambient air concentrations of sulfur dioxide and sulfate aerosols at 48 urban sites and 27 nonurban sites throughout the U.S. between 1963 and 1972 have been analyzed. The substantial decreases in ambient SO2 concentrations measured at urban sites in the eastern and midwestern U.S. are consistent with the corresponding reductions in local SO2 emissions, but these decreases have been accompanied by only modest decreases in ambient sulfate concentrations. Large differences in the amounts of SO2 emitted within individual air quality control regions are associated with much smaller differences in the corresponding ambient sulfate concentrations. Substantial changes in the patterns of SO2 emissions between air quality regions result in essentially no differences between ambient sulfate concentrations in those air quality regions. Comparisons of several air quality regions in the eastern and western U.S. with similar SO2 emission levels and patterns of emissions clearly demonstrates the higher ambient sulfate concentration levels in eastern air quality control regions. Relationships between SO2, sulfates, and vanadium concentrations at eastern nonurban U.S. sites cannot be explained by local emission sources. These various observed results can be best explained by long distance sulfur oxide transport with chemical conversion of SO2 to sulfates occurring over ranges of hundreds of kilometers. This conclusion has been suggested earlier and the present analysis strongly supports previous discussions. An impact of long range transport of sulfates is to emphasize the need for Consistent strategies for reduction of sulfur oxides throughout large geographical regions. Additions of large capacities involving elevated sources in mid-continental or western regions could result in significant increases in sulfate concentrations well downwind of such sources. Some of the types of research activities required to quantitate crucial experimental parameters are discussed.  相似文献   

2.
Major aspects of the circulation through the atmospheric environment of sulfur pollutants have been estimated, including source magnitudes, residual atmospheric concentrations, and scavenging processes. The compounds considered include SO2 and H2S, as well as sulfates. One-third of the sulfur reaching the atmosphere comes from pollutant sources, mainly as SO2. Within the atmosphere there is a net transfer of sulfur from land to ocean areas. Pollutant sources annually amount to 73 × 106 tons as sulfur while natural sources amount to 142 × 106 tons, mainly as H2S and sulfate sea spray. More than two thirds of the natural and pollutant sulfur emissions occur in the northern hemisphere. When only pollutant emissions are considered, 93 per cent occur in the northern hemisphere.  相似文献   

3.
A study was carried out to investigate the emissions of SO2 and primary sulfate materials (H2SO4 and inorganic particulate matter) from a boiler burning fossil fuel and using a wet-limestone scrubber for SO2 removal. Experiments were designed to assess the scrubbing efficiency for SO2 and sulfate, as well as the potential for scrubber liquor reentrainment. The boiler studied was an 820 MW cyclone-fired unit equipped with a wet, limestone scrubber, consisting of eight two-stage venturi-absorber modules designed to treat a flue gas flow rate of 2,760,000 acfm. The boiler fuel was a low-grade sub-bituminous coal with ash and sulfur contents of 25 and 5%, respectively. Multiple-sampling methods were employed concurrently on the inlet and outlet of a candidate absorber module to measure SO2, total water-soluble sulfate, and free H2SO4. Samples were collected during three field experiments from September 1977 through April 1978. The average SO2 scrubbing efficiency was 76% and was observed to decrease over the 5 day operation/maintenance cycle of the module. The total water-soluble sulfate input to the scrubber amounted to approximately 1% of the total sulfur oxides and was composed of a 5:1 ratio of H2SO4 to particulate sulfate. The total sulfate scrubbing efficiency, averaging about 29%, was invariant with respect to SO2 removal. The sulfate emissions measured in the scrubber exit gas consisted of about 85 % H2SO4 as a fine aerosol. Mass emissions of acid and particulate sulfate were calculated as 1730 Ib/hr and 305 Ib/hr, respectively.  相似文献   

4.
Contribution of pollution from different types of sources in Jamshedpur, the steel city of India, has been estimated in winter 1993 using two approaches in order to delineate and prioritize air quality management strategies for the development of region in an environmental friendly manner. The first approach mainly aims at preparation of a comprehensive emission inventory and estimation of spatial distribution of pollution loads in terms of SO2 and NO2 from different types of industrial, domestic and vehicular sources in the region. The results indicate that industrial sources account for 77% and 68% of the total emissions of SO2 and NO2, respectively, in the region, whereas vehicular emissions contributed to about 28% of the total NO2 emissions. In the second approach, contribution of these sources to ambient air quality levels to which the people are exposed to, was assessed through air pollution dispersion modelling. Ambient concentration levels of SO2 and NO2 have been predicted in winter season using the ISCST3 model. The analysis indicates that emissions from industrial sources are responsible for more than 50% of the total SO2 and NO2 concentration levels. Vehicular activities contributed to about 40% of NO2 pollution and domestic fuel combustion contributed to about 38% of SO2 pollution. Predicted 24-h concentrations were compared with measured concentrations at 11 ambient air monitoring stations and good agreement was noted between the two values. In-depth zone-wise analysis of the above indicates that for effective air quality management, industrial source emissions should be given highest priority, followed by vehicular and domestic sources in Jamshedpur region.  相似文献   

5.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

6.
Abstract

In Mexico City, the use and composition of fuels determine that carbon monoxide (CO) comes mostly from mobile sources, and sulfur dioxide (SO2) from fixed and mobile sources. By simultaneously measuring hydrocarbons (HC), CO, and SO2 in the atmosphere of Mexico City, the relative amounts coming from different sources can be estimated. Assuming that some HC are emitted proportionally to CO emissions, we can establish that [HC]1= m1? [CO], where the proportionality constant ml corresponds to the ratio of emissions factor for HC and CO in mobile sources. Similarly for fuels containing sulfur, it can be assumed that [HC]2 = m2 ? [SO2]. In this way, the total HC are [HC]total=[HC]0+ ml ? [CO]+ m2 ? [SO2], where [HC]0 corresponds mainly to other sources like solvent evaporation, gas consumption, and natural emissions. In this way, it can be estimated that in Mexico City 75% of average HC comes from mobile sources, 5% from sulfur-related sources, and 19% from natural sources and solvent evaporation. Compared with the HC/CO ratio measured in the exhaust pipe of vehicles, we estimated that 70% of HC emitted from mobile sources are evaporative losses, and only 30% come through the exhaust system.  相似文献   

7.
Serious contamination problems are encountered when measuring organic acids in polar ice. Using an involved experimental protocol, methanesulfonate, formate and acetate have been investigated in ice core sections from Antarctica. With CH3SO3 concentrations of a few ppb, HCOOat a few tenths of ppb and CH3COO around our detection limit, the organic acids represent only a small percentage of the total acidity in Antarctic ice.Analysis of the various possible sources indicates that methane is probably the major atmospheric precursor (via formaldehyde) of formate present in the ice.The significant presence of CH3SO3 in Antarctic ice confirms the preponderant role played by marine biogenic emissions in the Antarctic sulfate budget. The CH3SO3 ratio with respect to non-sea-salt sulfate is higher in Antarctic precipitation than in marine aerosol. Finally, CH3SO3 in polar ice is suggested to be a more suitable parameter than excess sulfate for the study of marine biogenic emissions in the past.  相似文献   

8.
Regional trends of seasonal and annual wet deposition and precipitation-weighted concentrations (PWCs) of sulfate in the United States over the period 1980–1995 were developed from monitoring data and scaled to a mean of unity. To reduce some effects of year to year climatological variability, the unitless regional deposition and PWC trends were averaged (hereafter termed CONCDEP). The SO2 emissions data over the same period from the United States, Canada, and northern Mexico, aggregated by state and province, were weighted appropriately for each deposition region in turn to produce scaled trends of the emissions affecting each region. The emission-weighting factors, which were held constant year to year, were estimated by exercise of a regional transport model. The sulfate CONCDEP regional trends are generally similar to those of regionally weighted SO2 emissions, although the latter trends are less steep and the former trends have more year to year variability. In eastern regions, sulfate CONCDEPs and SO2 emissions patterns both generally show an initial decrease, an essentially trendless middle period, and a final decrease as reductions mandated by the Acid Rain Provisions of the 1990 Clean Air Act Amendments began. Linear regressions of regional sulfate CONCDEPs on corresponding regionally weighted SO2 emissions produced statistically significant relationships in all regions. The analysis indicated that although regional sulfate CONCDEPs decreased relatively faster than did SO2 emissions during the period in all regions except the Great Plains, in general the slopes were not significantly different from unity.  相似文献   

9.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

10.
To improve our understanding of the mechanisms of particulate sulfur formation (non sea-salt sulfate, nss-SO42−) and methanesulfonate (MSx used here to represent the sum of gaseous methanesulfonic acid, MSA, and particulate methanesulfonate, MS) in the eastern Mediterranean and to evaluate the relative contribution of biogenic and anthropogenic sources to the S budget, a chemical box model coupled offline with an aerosol–cloud model has been used.Based on the measurements of gaseous dimethyl sulfide (DMS) and methanesulfonic acid (MSA) and the MSA sticking coefficient determined during the Mediterranean Intensive Oxidant Study (MINOS) experiment, the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to be about 0.3%. Consequently, MSA production from gas-phase oxidation of DMS is too small to explain the observed levels of MS. On the other hand, heterogeneous reactions of dimethyl sulfoxide (DMSO) and its gas-phase oxidation product methanesulfinic acid (MSIA) can account for most of the observed MS levels. The modelling results indicate that about 80% of the production of MS can be attributed to heterogeneous reactions.Observed submicron nss-SO42− levels can be fully explained by homogeneous (photochemical) gas-phase oxidation of sulfur dioxide (SO2) to sulfuric acid (H2SO4), which is subsequently scavenged by (mainly submicron) aerosol particles. The predominant oxidant during daytime is hydroxyl radical (OH) showing very high peak levels in the area during summer mostly under cloudless conditions. Therefore, during summer in the east Mediterranean, heterogeneous sulfate production appears to be negligible. This result is of particular interest for sulfur abatement strategy. On the other hand only about 10% of the supermicron nss-SO42− can be explained by condensation of gas-phase H2SO4, the rest must be formed via heterogeneous pathways.Marine biogenic sulfur emissions contribute up to 20% to the total oxidized sulfur production (SO2 and H2SO4) in good agreement with earlier estimates for the area.  相似文献   

11.
Abstract

Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

12.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

13.
The photochemical oxidation and dispersion of reduced sulfur compounds (RSCs: H2S, CH3SH, DMS, CS2, and DMDS) emitted from anthropogenic (A) and natural (N) sources were evaluated based on a numerical modeling approach. The anthropogenic emission concentrations of RSCs were measured from several sampling sites at the Donghae landfill (D-LF) (i.e., source type A) in South Korea during a series of field campaigns (May through December 2004). The emissions of natural RSCs in a coastal study area near the D-LF (i.e., source type N) were estimated from sea surface DMS concentrations and transfer velocity during the same study period. These emission data were then used as input to the CALPUFF dispersion model, revised with 34 chemical reactions for RSCs. A significant fraction of sulfur dioxide (SO2) was produced photochemically during the summer (about 34% of total SO2 concentrations) followed by fall (21%), spring (15%), and winter (5%). Photochemical production of SO2 was dominated by H2S (about 55% of total contributions) and DMS (24%). The largest impact of RSCs from source type A on SO2 concentrations occurred around the D-LF during summer. The total SO2 concentrations produced from source type N around the D-LF during the summer (a mean SO2 concentration of 7.4 ppbv) were significantly higher than those (≤0.3 ppbv) during the other seasons. This may be because of the high RSC and SO2 emissions and their photochemistry along with the wind convergence.  相似文献   

14.
Factor analysis comparisons between the MAP3S network and Minnesota precipitation chemistry data show marked differences. An assessment of ambient aerosol and precipitation chemistry data obtained at several Colorado and Minnesota sites suggests that natural source inputs may contribute to the sulfate observed in ambient aerosol and at least partly, explain the marked differences of Minnesota and Colorado precipitation chemistry data from that of MAP3S (eastern U.S.). However, a recently proposed mechanism, SO2 to SO4 conversion on the surface of dust particles, may be more important than natural sources in explaining western and midwestern precipitation chemistry data. It is concluded that these predominantly non-acidic SO4 sources may explain the poor association between the H+ and SO4 in many western and some midwestern precipitation chemistry data sets.  相似文献   

15.
General procedures for adapting emission inventories to regional models and for studying the impact of differences in inventories on model predictions are outlined. To illustrate the methods, analysis of two inventories which are still being validated is presented. The inventories together satisfy current requirements for the NCAR regional acid deposition model (RADM). These include anthropogenic emissions of SO2, sulfate aerosol, NO, NO2, NH3 and volatile organic compounds (VOC) in 10 reactivity classes, from United States and Canadian point and area sources on 80-km grid resolutions, for weekend and weekday seasonally representative days on a diurnal basis during the 1980–1982 period. Application of checking procedures, designed by our group to screen for subtle anomalies not identified at previous stages of quality assurance employed by the inventory developers, resulted in adjustments primarily to VOC emissions. Comparisons of the modified inventories, which provide an indication of uncertainties in emissions due to variations in inventory development procedures, revealed differences in the eastern United States total daily emissions to be at most on the order of 5 % for SOx, and NOx, 20% for VOC and 85% for NH3. Studies of the impact of inventory differences on predictions of RADM were conducted for the 22–24 April 1981 period, which was monitored as part of the Oxidation and Scavenging Characteristics of April Rains program. Event total wet sulfate deposition differed by 10% or less while midday O3 concentrations differed by 1% or less for individual grids over the modeling domain.  相似文献   

16.
Health studies have shown premature death is statistically associated with exposure to particulate matter <2.5 μm in diameter (PM2.5). The United States Environmental Protection Agency requires all States with PM2.5 non-attainment counties or with sources contributing to visibility impairment at Class I areas to submit an emissions control plan. These emission control plans will likely focus on reducing emissions of sulfur oxides and nitrogen oxides, which form two of the largest chemical components of PM2.5 in the eastern United States: ammonium sulfate and ammonium nitrate. Emission control strategies are simulated using three-dimensional Eulerian photochemical transport models.A monitor study was established using one urban (Detroit) and nine rural locations in the central and eastern United States to simultaneously measure PM2.5 sulfate ion (SO42−), nitrate ion (NO3), ammonium ion (NH4+), and precursor species sulfur dioxide (SO2), nitric acid (HNO3), and ammonia (NH3). This monitor study provides a unique opportunity to assess how well the modeling system predicts the spatial and temporal variability of important precursor species and co-located PM2.5 ions, which is not well characterized in the central and eastern United States.The modeling system performs well at estimating the PM2.5 species, but does not perform quite as well for the precursor species. Ammonia is under-predicted in the coldest months, nitric acid tends to be over-predicted in the summer months, and sulfur dioxide appears to be systematically over-predicted. Several indicators of PM2.5 ammonium sulfate and ammonium nitrate formation and chemical composition are estimated with the ambient data and photochemical model output. PM2.5 sulfate ion is usually not fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. The model and ambient estimates agree that the ammonia study monitors tend to be nitric acid limited for PM2.5 nitrate formation. Regulatory strategies in this part of the country should focus on reductions in NOX rather than ammonia to control PM2.5 ammonium nitrate.  相似文献   

17.
The large differences in seasonal rates of wet sulfate deposition observed at many receptors in eastern North America imply that reducing SO2 emissions only in the summer half of the year (April-September) would bring about greater annual wet sulfate deposition reductions than reducing emissions by the same amount year-round. Targeting the emission reductions to those source areas which contribute the bulk of summer depositions in ecologically sensitive areas would increase further the gain factor, defined as the ratio of annual fractional deposition decrement to annual fractional emission decrement. In the northeastern U.S., between 10 and 15 rain episodes deposit about 60 percent of the annual wet sulfate; reducing emissions in the dry periods preceding these heavy deposition episodes could further increase the gain factor. However, it is difficult to predict these episodes, and they do not occur simultaneously over large regions of the country.  相似文献   

18.
Abstract

Emissions of acid gases such as SO2 and HCI/CI2 from energy conversion or waste incineration facilities are unacceptable. Under the various regulations, the emissions of such acid gases are regulated by the U.S. Environmental Protection Agency (EPA). Alkali metal sorbents can remove these acid gases more efficiently than the lime/limestone type sorbents used in the conventional flue gas desulfurization (FGD) systems. However, the resulting alkali metal sulfate and chloride are unsuitable for landfill disposal because they are water-soluble and can potentially leach into groundwater, altering the soil pH. Replacing the (virgin) sorbent material is expensive. Hence, it is desirable that the spent sorbent materials obtained from such emissions control systems be converted to sulfur- and chlorine-free forms, so that they can be reused. The weak-base, anionexchange resin-based desulfurization concept, developed and tested at the University of Tennessee Space Institute (UTSI), can also simultaneously remove sulfur- and chlorine- containing species from such spent sorbent materials. Under the U.S. Department of Energy’s (DOE) sponsorship, bench scale studies have been carried out at UTSI to evaluate the feasibility of removing sulfur- and chlorine-containing species using this resin-based concept. Efforts have also been made to enhance the candidate resins’ performance by carrying out the resin exhaustion step under CO2 static pressure and by using suitable pH buffering agents, such as low-molecular weight organic acids. Preliminary cost estimates for a regeneration scheme employing reactivated alkali metal-based spent sorbent material using the ion-exchange resin-based concept seem attractive and comparable to currently available options. After further development, this low-cost, simple process can be easily integrated into alkali metal sorbent-based flue gas desulfurization and acid gas emission control systems.  相似文献   

19.
Experiments have been conducted to measure vehicle sulfate emissions, by vehicle type, at two tunnels on the Pennsylvania Turnpike. A satisfactory balance between estimated fuel sulfur consumption and observed emissions of sulfur compounds corrected for ambient-air contributions was obtained. This work started in 1974 before the introduction of catalyst-equipped automobiles and continued into 1976. The sulfate contributed by vehicles even in the tunnels was found to be generally modest relative to rural ambient sulfate levels. Average sulfate emission rates were found to be ~30 mg/km (50 mg/mi) from heavy-duty Diesel trucks, <15 mg/km from catalyst-equipped cars (probably in the range 4 to 7 mg/km), and probably <1 mg/km from non-catalyst cars. The overall SO2 —* SO4 -2 conversion of the vehicle emissions was 2 %.  相似文献   

20.
We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO42?) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO42? concentrations were higher at the sites closer to the Asian continent. The concentrations of SO42? from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO42? to the total in Japan throughout the year was above 50–70% in the control case, using data for Chinese sulfur dioxide (SO2) emission from the Regional Emission Inventory in Asia (40–60% in the low Chinese emissions case, using Chinese SO2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65–80%, although the actual concentrations of SO42? from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO42? concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO2 concentrations; instead SO2 concentrations were significantly correlated with local SO2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO42? concentrations in Japan are controlled by the transboundary outflow from the Asian continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号