首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic fraction for mechanical upgrading and separation into specific polymer types, with the residual plastic fraction being down-cycled and used for “wood items”. In P3 a mixed plastic fraction is source separated together with metals in a “dry bin”. In P4 plastic is mechanically separated from residual waste prior to incineration.A sensitivity analysis on the marginal energy was carried out. Scenarios were modelled as a first step assuming that marginal electricity and heat were based on coal and on a mix of fuels and then, in the sensitivity analysis, the marginal energy was based on natural gas.The study confirmed the difficulty to clearly identify an optimal strategy for plastic waste management. In fact none of the examined scenarios emerged univocally as the best option for all impact categories. When moving from the P0 treatment strategy to the other scenarios, substantial improvements can be obtained for “Global Warming”. For the other impact categories, results are affected by the assumption about the substituted marginal energy. Nevertheless, irrespective of the assumptions on marginal energy, scenario P4, which implies the highest quantities of specific polymer types sent to recycling, resulted the best option in most impact categories.  相似文献   

2.
Iron is an important basic resource for national economic development in China. It is of great strategic importance for the sustainable development of China's economy to study the utilization and circulation status of iron resources. In this paper, using the material flow and value chain analysis method, we quantitatively analyzed the value flow of iron resources in China. According to the value chain and price theory of element M, a value stream diagram of iron resources corresponding to the substance flow chart was plotted. Based on the previous material flow analysis result of iron resources, the diagram quantitatively depicted the value of the circulating flow of iron resources in China in 2011. The results show that by recycling materials, the value of the circulating flow of iron resources can bring considerable economic benefits to both producers and consumers. In the production stage, the expenditures of the entire economic system was reduced by 91.77 billion RMB by circulating iron and the income increased by 95 billion RMB by recycling home scrap, which was generated in the crude steel production stage. In the use stage of iron and steel products, the recycling of old scrap enabled the entire economic system to recover 370.78 billion RMB. It should be noted that analysis within a single framework of physical and economic characteristics of iron resources in the economic system can further extend the research chain of substance flow and value flow at the macro level, enhancing the economic value of substances flow research. In addition, by tracking and depicting the value flow cycle of elements, the improvement potentials and the value situations can be determined to provide useful information for conducting processing and technological innovation for waste minimization.  相似文献   

3.
4.
Changes in the trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling in the United States. In response to these challenges, new and innovative approaches to automobile recycling are being developed. This paper presents the findings of a recent study to examine the impacts of these changes on the life cycle energy consumption of automobiles and on the quantity of waste that must be disposed of. Given the recycle status quo, trends in material composition and the viability of recycling the non-metallic components of the typical automobile are of secondary importance when compared to the energy consumed during the life of the automobile. The energy savings resulting from small changes in the fuel efficiency of a vehicle overshadow potential energy losses associated with the adoption of new and possibly non-recyclable materials. Under status quo conditions, the life cycle energy consumed by the typical automobile is projected to decrease from 599 million Btus in 1992 to 565 million Btus in 2000. Energy consumed during the manufacture of the typical car will increase from about 120 to 140 million Btus between 1992 and 2000, while energy used during vehicle operation will decrease from 520 to 480 million Btus. This study projects that energy saved at the recycle step will increase from 41 million Btus in 1992 to 55 million Btus in 2000. This study also investigated the energy impacts of several potential changes to the recycle status quo, including the adoption of technologies to retrieve the heat value of ASR by incineration and the recycle of some or all thermoplastics in the typical automobile. The study estimates that under optimistic conditions —i.e., the recycling of all thermoplastics and the incineration with heat recovery of all remaining ASR —about 8 million Btus could be saved per automobile —i.e., an increase from about 55 to 63 million Btus. In the more realistic scenario —i.e., the recycling of easy-to-remove thermoplastic components (bumper covers and dash-boards) —the potential energy savings are about 1 million Btus per vehicle. It is estimated that the annual quantity of ASR in the United States could be reduced from about 5 billion pounds to as little as 1 billion pounds of ash if all ASR is incinerated. Alternatively, ASR quantity could be reduced to about 4 billion pounds if all thermoplastics in automobiles are recycled. However, in the case of recycling only thermoplastic bumper covers and dashboards, the quantity of ASR would be reduced by only 0.2 billion pounds. A significant reduction or increase in the size of the ASR waste stream will not in itself have a large impact on the solid waste stream in the United States.  相似文献   

5.
This paper reviews databases on material recycling (primary as well as secondary production) used in life cycle assessments (LCA) of waste management systems. A total of 366 datasets, from 1980 to 2010 and covering 14 materials, were collected from databases and reports. Totals for CO2-equivalent emissions were compared to illustrate variations in the data. It was hypothesised that emissions from material production and the recycling industry had decreased over time due to increasing regulation, energy costs and process optimisation, but the reported datasets did not reveal such a general trend. Data representing the same processes varied considerably between databases, and proper background information was hard to obtain, which in turn made it difficult to explain the large differences observed. Those differences between the highest and lowest estimated CO2 emissions (equivalents) from the primary production of newsprint, HDPE and glass were 238%, 443% and 452%, respectively. For steel and aluminium the differences were 1761% and 235%, respectively. There is a severe lack of data for some recycled materials; for example, only one dataset existed for secondary cardboard. The study shows that the choice of dataset used to represent the environmental load of a material recycling process and credited emissions from the avoided production of virgin materials is crucial for the outcome of an LCA on waste management. Great care and a high degree of transparency are mandatory, but advice on which datasets to use could not be determined from the study. However, from the gathered data, recycling in general showed lower emission of CO2 per kg material than primary production, so the recycling of materials (considered in this study) is thus beneficial in most cases.  相似文献   

6.
The imperatives for reducing the world's dependence on fossil and nuclear fuels have multiplied manifold in recent years with the advent of worldwide terrorism. These new dangers come in addition to the imperatives of addressing the dire consequences of global warming and devastating pollution that accompany the use of these fossil fuels. Reducing dependence on these unsafe and unreliable energy resources should be a top global priority. Implementation of proven energy efficiency technologies offers the world the fastest, safest, most economic and most environmentally benign way to alleviate these threats. This article outlines available efficiency measures, their economic advantages and means by which they may be and have been implemented. While examples of efficiency applications from both developed and developing countries are given, the article relies heavily on experience with energy efficiency in the United States, where data on efficiency is particularly abundant.  相似文献   

7.
The human population is rising and the availability of terrestrial land and its resources are finite and, perhaps, not sufficient to deliver enough food, energy, materials and space. Thus, it is important to (further) explore and exploit the marine environment which covers no less than 71% of the earth's surface. The marine environment is very complex but can roughty be divided into two systems: natural (e.g. wild fishing) and human-made (e.g. artificial islands). In this study, characterization factors (CF) for natural and human-made marine systems were calculated in order to be able to assess the environmental impact of occupying marine surfaces, which was not possible so far in life cycle assessment. When accounting for natural resources while occupying one of these systems, it is important to consider the primary resources that are actually deprived from nature, which differs between the natural and human-made marine systems.In natural systems, the extracted biomass was accounted for through its exergy content, which is the maximum quantity of work that the system can execute in its environment. Reference flows for marine fish, seaweeds, crustaceans and mollusks were proposed and their correlated CF was calculated. For human-made systems, the deprived land resource is, in fact, the occupied area of the marine surface. Based on potential marine net primary production data (NPP), exergy based spatial and temporal CFs for ocean areal occupation were calculated. This approach was included in the Cumulative Exergy Extraction from the Natural Environment (CEENE) method which makes it the first life cycle impact assessment (LCIA) method capable of analyzing the environmental impact (and more specific the resource footprint) of marine areal occupation. Furthermore, the methodology was applied to two case studies: comparing resource consumption of on- and offshore oil production, and fish and soybean meal production for fish feed applications.  相似文献   

8.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

9.
This study presents the results of a comparative life cycle assessment (LCA) on the energy requirements and greenhouse gas (GHG) emission implications of recycling construction and demolition (C&D) rubble and container glass in Cape Town, South Africa. Cape Town is a medium sized city in a developing country with a growing population and a rising middle class, two factors that are resulting in increased generation of solid waste. The City is constrained in terms of landfill space and competing demands for municipal resources.The LCA assessment was based on locally gathered data, supplemented with ecoinvent life cycle inventory data modified to the local context. The results indicated that recycling container glass instead of landfilling can achieve an energy savings of 27% and a GHG emissions savings of 37%, with a net savings still being achieved even if collection practices are varied. The C&D waste results, however, showed net savings only for certain recycling strategies. Recycling C&D waste can avoid up to 90% of the energy and GHG emissions of landfilling when processed and reused onsite but, due to great dependence on haulage distances, a net reduction of energy use and GHG emissions could not be confidently discerned for offsite recycling. It was also found that recycling glass achieves significantly greater savings of energy and emissions than recycling an equivalent mass of C&D waste.The study demonstrated that LCA provides an important tool to inform decisions on supporting recycling activities where resources are limited. It also confirmed other researchers’ observations that strict adherence to the waste management hierarchy will not always result in the best environmental outcome, and that more nuanced analysis is required. The study found that the desirability of recycling from an energy and climate perspective cannot be predicted on the basis of whether such recycling conserves a non-renewable material. However, recycling that replaces a virgin product from an energy-intensive production process appears to be more robustly beneficial than recycling that replaces a product with little embodied energy. Particular caution is needed when applying the waste management hierarchy to the latter situations.  相似文献   

10.
Life cycle assessment (LCA) can be successfully applied to municipal solid waste (MSW) management systems to identify the overall environmental burdens and to assess the potential environmental impacts. In this study, two methods used for current MSW management in Phuket, a province of Thailand, landfilling (without energy recovery) and incineration (with energy recovery), are compared from both energy consumption and greenhouse gas emission points of view. The comparisons are based on a direct activity consideration and also a life cycle perspective. In both cases as well as for both parameters considered, incineration was found to be superior to landfilling. However, the performance of incineration was much better when a life cycle perspective was used. Also, landfilling reversed to be superior to incineration when methane recovery and electricity production were introduced. This study reveals that a complete picture of the environmental performance of MSW management systems is provided by using a life cycle perspective.  相似文献   

11.
We performed a detailed analysis of the potential future costs and performance of post-combustion CO2 absorption in combination with a natural gas combined cycle (NGCC). After researching state-of-the-art technology, an Excel model was created to analyze possible developments in the performance of energy conversion, CO2 capture, and CO2 compression. The input variables for the three time frames we used were based on literature data, product information, expert opinions, and our own analysis. Using a natural gas price of 4.7 €/GJ, we calculated a potential decrease in the costs of electricity from 5.6 €ct/kWh in the short term to 4.8 €ct/kWh in the medium term and 4.5 €ct/kWh in the long term. The efficiency penalty is calculated to decline from 7.9%-points LHV in the short term to 4.9%-points and 3.7%-points in the medium and long terms, respectively. In combination with NGCC improvements, this may cause an improvement in the net efficiency, including CO2 capture, from 49% in the short term to 55% and 58% in the medium and long terms, respectively. The total capital costs including capital costs of the NGCC ware calculated to decline from 880 in the short term to 750 and 690 €/kW in the medium and long terms, respectively, with a decline in the incremental capital costs due to capture from 350 in the short term to 270 and 240 €/kW in the medium and long terms, respectively. Finally, the avoidance costs may decline from 45 €/tCO2 in the short term to 33 €/tCO2 in the medium term and 28 €/tCO2 in the long term.  相似文献   

12.
The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (−1.7 PE), acidification (−0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (−12.8 PE). A combined digestion and composting technology lessens the effects of acidification (−12.2 PE), nutrient enrichment (−5.7 PE), and global warming (−7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.  相似文献   

13.
This paper aims at analysing how secondary materials production and end of life recovery processes are modelled in life cycle-based environmental assessment methods in order to discuss their suitability in product policy-support contexts, with a focus on Sustainable Consumption and Production (SCP) policies. The equations prescribed in three published, widely recognised standards are evaluated. In addition, more recent modelling approaches that have been adopted in the context of two EU product policy initiatives (the Product Environmental Footprint (PEF) and the Resource Efficiency Assessment of Products (REAPro)) are similarly analysed. All of the methods are scrutinised against eight criteria which we deem to be important in product policy-support contexts, including comprehensiveness, accommodation of open-loop and closed-loop product systems, and consideration of recyclability/recoverability rates, to name a few. Based on this analysis, it is suggested that the PEF and REAPro modelling approaches appear to be better suited for use in product policy-support contexts than do the currently widely endorsed methods that we considered.  相似文献   

14.
Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.
Marina Mistretta (Corresponding author)Email:
  相似文献   

15.
This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. We do this in two ways to actively appeal to chief executive officers (CEOs) and chief financial officers (CFOs) primary responsibility: to enhance shareholder value. First, we describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, we present such information in corporate financial terms. These standard, widely-accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects’ non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability.  相似文献   

16.
Resource consumption in developing countries has been the focus of a considerable amount of research. What has been understudied however, has been the feedback affects of resource consumption on resource availability to both households and communities. Heavy reliance on natural resources and intensive smallholder agriculture common to many rural communities in developing countries has forced people to fulfill short-term needs to the detriment of long-term ecological and livelihood sustainability. This paper introduces a conceptual framework to examine how individuals and households fulfill daily caloric needs and the aggregate effects on resource availability and consumption. Data were collected from a large number of published case studies of rural land-use dynamics, growth and yield models, and human livelihoods were reviewed from scientific journals, reports published by NGOs, and government reports. Using inputs defined by the user, the model tracks annual fuelwood and agricultural land use based on meeting individual energy demands. A case-study-based analysis was patterned after smallholder agriculturalists at the family and community level. Three scenarios are presented in this paper using data from Uganda to illustrate the application of this model.  相似文献   

17.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

18.
Contemporary reports on the energy and environmental benefits of bioethanol have suggested that the cellulosic ethanol is significantly more efficient. To understand the development potential of energy crops in Taiwan, the present study has assessed the resources and cost inputs for the planning, harvesting, transporting, and storing procedures of the first generation energy crops during 2007–2010 with the perspective of LCA. In addition, a field investigation focusing on rice straw, the largest agricultural waste in Taiwan, has been conducted since 2010 to obtain fundamental data.This study further analyzes the first and second-generation feedstocks from the perspective of LCA based on field investigated data. Taiwan has not yet established an ethanol plant; therefore, this study established production data by simulating the production efficiency of an economical scale using parameters obtained through production trials, and proposed an evaluation model for the energy input, GHG, and production costs of bioethanol in Taiwan. The results of this study were cross-compared with foreign literature to explore the development potential of bioethanol in Taiwan. The results indicate that based on the current cellulosic ethanol technology in Taiwan, regarding the energy balance, GHG, and production costs, is less efficient than that of the first generation bioethanol.  相似文献   

19.
Since 1999, the International Atomic Energy Agency (IAEA) has been leading a multinational, multi‐agency effort to develop a set of energy indicators useful for measuring progress on sustainable development at the national level. This effort has included the identification of major relevant energy indicators, the development of a framework for implementation and the testing of the applicability of this tool in a number of countries. To achieve these goals, the IAEA has worked closely with other international organizations, leaders in energy and environmental statistics and analysis including the United Nations Department of Economic and Social Affairs (DESA), the International Energy Agency (IEA), Eurostat and the European Environment Agency (EEA). Also, the IAEA completed a three‐year coordinated research project for the implementation and testing of the original set of indicators in seven countries — Brazil, Cuba, Lithuania, Mexico, the Russian Federation, the Slovak Republic and Thailand. This article provides an overview of the IAEA programme on Indicators for Sustainable Energy Development (ISED) and highlights its experiences and accomplishments.  相似文献   

20.
The aim of this paper is to evaluate two agroindustrial productive processes in their entirety (one organic and one semi-industrial), focusing on the comparison of impacts derived from the inputs and outputs of the system (life cycle assessment, LCA), integrated with a physical evaluation of the resources and natural services, on a common basis (emergy). Methods based on the joint use of LCA and emergy evaluation are useful, as they measure the contribution of environmental services and products to the productive process thus focusing primarily on the environmental impact of emissions and non-renewable energy inputs. The complementarity of the methods used in this paper contributes important elements and information useful for the comprehension of the organization of agriculture within Siena's territory. The results show important elements and useful information: (1) for the comprehension of the two agroecosystems' organization; (2) for the use of the energy flows that determine their development. Moreover, the combined use of emergy and LCA gives a comparative thermodynamic performance evaluation between organic and semi-industrial farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号