首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The manufacture of prefabricated building materials containing binding products such as ettringite (6CaO·Al2O3·3SO3·32H2O) and calcium silicate hydrate (CSH) can give, in addition to other well-defined industrial activities, the opportunity of using wastes and by-products as raw materials, thus contributing to further saving of natural resources and protection of the environment.Two ternary mixtures, composed by 40% flue gas desulfurization (FGD) gypsum or natural gypsum (as a reference material), 35% calcium hydroxide and 25% coal fly ash, were submitted to laboratory hydrothermal treatments carried out within time and temperature ranges of 2 h–7 days and 55–85 °C, respectively. The formation of (i) ettringite, by hydration of calcium sulfate given by FGD or natural gypsum, alumina of fly ash and part of calcium hydroxide, and (ii) CSH, by hydration of silica contained in fly ash and residual lime, was observed within both the reacting systems. For the FGD gypsum-based mixture, the conversion toward ettringite and CSH was highest at 70 °C and increased with curing time. Some discrepancies in the hydration behavior between the mixtures were ascribed to differences in mineralogical composition between natural and FGD gypsum.  相似文献   

2.
Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28 cm-high, 18 cm-wide and 3 cm-thick units, and is measured as the time needed to reach a temperature of 180 °C on the non-exposed surface of the blocks for the different compositions.The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.  相似文献   

3.
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.  相似文献   

4.
Fly ash produced by coal combustion using two types of desulphurization process were studied: a conventional pulverized coal boiler equipped with lime injection (PCL ash), and a circulating fluidized bed combustion boiler with limestone injection (CFBC ash). The ashes were characterized completely: granulometry, morphology, mineralogy, chemical composition and behaviour to water contact. Both PCL ash and CFBC ash present similar features: fine granulometry, presence of anhydrite phase and sulphate content. However, PCL ash also shows lots of spherical particles, unlike CFBC ash, and a much higher lime content, due to the lower desulphurization rate in PC boilers. Unlike CFBC ash, most of the trace elements in PCL ash show an inverse concentration–particle size dependence. Leachates obtained from both samples are rich in soluble salts [CaSO4and Ca(OH)2] and arsenic and selenium are prevented from solubilizing by high lime content. In wetted PCL ash, the formation of ettringite crystals stabilizes calcium and sulphate ions. Simultaneously, arsenate, selenate and chromate anions are trapped in the crystal. CFBC ash does not really harden because the lime content is too low. However, the leached selenium concentration is cut down in wetted CFBC ash samples.  相似文献   

5.
A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.  相似文献   

6.
Sorbents synthesized from various types of ash (coal fly ash, coal bottom ash, oil palm ash, and incinerator ash) for flue gas desulfurization were investigated. The sorbents were prepared by mixing the ashes with calcium oxide and calcium sulfate using the water hydration method. The effects of various sorbent preparation variables, such as the hydration period, the ratio of calcium oxide to ash, and the amount of calcium sulfate, on the Brunauer-Emmett-Teller (BET)-specific surface area of the resulting sorbent were studied using a two-level full factorial design. The surface area of the sorbents obtained range from 15.4 to 122.1m2/g. Regression models were developed to correlate the significant variables to the surface area of the sorbents. An analysis of variance (ANOVA) showed that the model was significant at a confidence level of 95%. It was found that apart from all the individual variables studied, interactions between variables also exerted a significant influence on the surface area of the sorbent. From the activity test results, it was found that sorbents prepared from coal fly ash and oil palm ash have the highest SO2 absorption capacity. Scanning electron microscope (SEM) analysis showed that the sorbent was composed of a compound with a high structural porosity, while an X-ray diffraction spectrum showed that calcium aluminum silicate hydrate compounds are the main products of the hydration reaction.  相似文献   

7.
王滩电厂脱硫系统经济运行初探   总被引:1,自引:0,他引:1  
介绍了王滩电厂2×600MW机组石灰石—石膏湿法脱硫系统实现经济运行的经验,提出了降低电耗、水耗、石灰石耗量的具体措施。王滩电厂脱硫装置已投运三年多,其运行实践表明,通过采取上述措施,在额定工况下可保证脱硫效率达95%,且脱硫系统多项运行指标均优于设计值。  相似文献   

8.
Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment.  相似文献   

9.
A study of disposed fly ash from landfill to replace Portland cement   总被引:1,自引:0,他引:1  
The landfills of fly ash are the problem of all power plants because this disposed fly ash is not used in any work. This research studies the potential of using disposed fly ashes which have disposal time of 6-24 months from the landfill of Mae Moh power plants in Thailand to replace Portland cement type I. Median particle sizes of disposed fly ashes between 55.4 and 99.3 microm were ground to reduce the sizes to about 7.1-8.4 microm. Both original and ground disposed fly ashes were investigated on physical and chemical properties. Compressive strengths of disposed fly ash mortars were determined when Portland cement type I was replaced by disposed fly ashes at the rate of 10%, 20%, and 30% by weight of cementitious material (Portland cement type I and disposed fly ash). The results presented that most particles of original disposed fly ashes were solid and sphere with some irregular shape while those of ground disposed fly ashes were solid and irregular shape. CaO and LOI contents of disposed fly ashes with different disposal times had high variation. The compressive strengths of original disposed fly ash mortars were low but those of ground disposed fly ash mortars at the age of 7 days were higher than 75% of the standard mortar and increased to be higher than 100% after 60 days. From the results, it could be concluded that ground disposed fly ashes were excellent pozzolanic materials and could be used as a partial replacement of cement in concrete, even though they were exposed to the weather for 24 months.  相似文献   

10.
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na2SiO3) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na2SiO3/NaOH of 1.5 and curing temperature of 65 °C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0–44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.  相似文献   

11.
In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative.  相似文献   

12.
For the economy of any co-firing process, it is important that the common waste management options of ash remain practical. Ash from bituminous coal combustion is typically handed to the construction industry. This paper describes the current European legislation on use of ash for construction purposes. Also, it presents an experimental study on the suitability of fly ash from combustion of mixtures of bituminous coal and municipal sewage sludge as additive to cement and concrete, and for use in open-air construction works, based on the ash chemical composition and the characteristics of the extract of the ash. Presently, two European standards forbid the use of ash from co-firing as additive to cement or concrete. This study shows that ash derived from coal and sewage sludge co-firing contains generally less unburned carbon, alkali, magnesium oxide, chlorine, and sulfate than coal ash. Only the concentration of free lime in mixed ash is higher than in coal, even though, at least up to 25% of the thermal input, still below the requirements of the standards. This ash also meets the requirements for the use of fly ash in open-air construction works--concentration and mobility of few elements--although this management option is forbidden to ash from co-firing. The leaching of Cd, Cr, Cu, Ni, Pb and Zn was investigated with three leaching tests. The concentration of these metals in the extracts was below the detection limit in most cases. The concentration of Cu and Zn in the extract from fly ash was found to increase with increasing share of sewage sludge in the fuel mixture. However, the concentration of these two metals in the extract is not regulated. This study indicates that excluding a priori the use of ash from co-firing as a suitable additive for construction material could cause an unnecessary burden on the environment, since probably ash would have to be disposed of in landfill. However, allowing this requires the modification of current European standards to include limitations on all elements and compounds, absent in coal but which might be present in other fuels, that are deleterious for the quality of construction materials.  相似文献   

13.
The durability, of mixtures of two kinds of Spanish fly ashes from coal combustion (ASTM class F) with 0, 15 and 35% replacement of Portland cement by fly ash, in a simulated marine environment (Na(2)SO(4)+NaCl solution of equivalent concentration to that of sea water: 0.03 and 0.45 M for sulphate and chloride, respectively), has been studied for a period of 90 days. The resistance of the different mixtures to the attack was evaluated by means of the Koch-Steinegger test. The results showed that all the mixtures were resistant, in spite of the great amount of Al(2)O(3) content of the fly ash. The diffusion of SO(4)(2-), Na+ and Cl- ions through the pore solution activated the pozzolanic reactivity of the fly ashes causing the corresponding microstructure changes, which were characterized by X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). As a result, the flexural strength of the mixtures increased, principally for the fly ash of a lower particle size and 35% of addition.  相似文献   

14.

The present study investigates the feasibility of using two types of municipality solid wastes incineration ashes, namely, fly ash and bottom ash in the production of sustainable alkali-activated binder. The ashes are collected from the incineration plant and characterized to determine their particle size distribution, specific gravity, chemical composition, and heavy metals content. The ashes are then used as either fly ash or sand replacement with five replacement ratios 0%, 5%, 10%, 15%, and 20% to produce the binder. The produced binder are characterized in terms of strength, workability, density, water absorption, thermal conductivity and stability, chemical composition, and heavy metals content. The results reflect the ability of producing sustainable alkali-activated binder with small dosage of MSWI ashes as either fly ash or sand replacement without negatively affecting its strength, workability, density, and water absorption. The ashes enhance the thermal insulation capability of the binder.

  相似文献   

15.
Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt−1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2–20 Mg ha−1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha−1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens’ activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.  相似文献   

16.
Leachate from mixtures of fly ash and flue gas desulphurizing (FGD) residues were analysed by shake and column tests. The pozzolanic reaction between FGD and fly ash proceeds over a period of several months forming a dense structure with reduced leachability. High variations were found between different sources of ash and FGD.  相似文献   

17.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

18.
This compact, high-flow device aerodynamically separates small particles from a gas stream by a series of annular truncated airfoils. The operating concept, design and performance of this novel particle separator are described. Tests results using corn starch and post-cyclone coal fly ash are presented. Particle collection efficiencies of 90% for corn starch and 70% for coal fly ash were measured at inlet velocities of 80 ft s−1 (2700 cfm) and (6 inches) water pressure drop with particle loading up to 4 gr ft−3 in air at standard conditions. Results from computer modeling using FLUENT are presented and compared to the tests. The aerodynamic particle separator is an attractive alternative to a cyclone collector.  相似文献   

19.
Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 MWe CFBC boiler at Point Aconi were examined for exothermic behaviour. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 MWe TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behaviour. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 J/g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/g/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)2, while for the bed ash a third or less of the CaO was converted to Ca(OH)2. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behaviour of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behaviour.  相似文献   

20.
Industrial by-products were used for the production of controlled low-strength material (CLSM). CLSM, also known as 'flowable fill' is used as a replacement of compacted soil in cases where the application of the latter is difficult or impossible. The low mechanical requirements (compared with structural concrete) enable the use of industrial by-products for the production of CLSM. In this study cement kiln dust, asphalt dust, coal fly ash, coal bottom ash and quarry waste were tested for the possibility of producing CLSM with large proportions of those wastes. The results showed that in most cases, CLSM with good properties could be made with significant amounts of dust (25-50%w), especially when the dust has some cementing or pozzolanic potential as do fly ash and cement kiln dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号